Name:

Instructions: Partial credit may be given for partial answers: always show your work. You are not required to simplify your answers. Calculators, notes, books, and cell phones are not allowed. Please ask the teacher for clarification if needed.

1. Differentiate the function $f(x)=\frac{x^{3}}{x^{2}+3}$.
2. Find the slope of the tangent line to the graph of $f(x)=(x-1)^{2}(x+1)^{2}$ at the point $(2,9)$.
3. Find the second derivative of $f(x)=x^{3}-2 x^{2}+7 x$.
4. Find the second derivative of $f(x)=\left(x^{2}-1\right)^{5}$.
5. Find $\frac{d y}{d x}$ when $x^{2}-5 x y+y^{2}=10$.
6. Find $\frac{d y}{d x}$ when $x^{-2}-y^{-1}=5$
7. Find the relative extrema of the function $f(x)=x^{3}+\frac{3}{2} x^{2}-6 x$. Clearly label each relative extreme as a maximum or a minimum.
8. Find the relative extrema of the function $f(x)=\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+2 x^{2}+3$. Clearly label each relative extreme as a maximum or a minimum.
9. A cylindrical keg is being emptied of beer at a rate of 0.5 cubic feet per minute. The volume of beer in the keg is $V=\pi h$ cubic feet when the level of the beer is h feet. Find the rate of change of the beer level $\left(\frac{d h}{d t}\right)$.
10. Special Agent Fox Mulder is caught in the levitation beam of a small flying saucer. Agent Mulder is rising toward the saucer at a rate of $2 \mathrm{~m} / \mathrm{s}$. You are standing 4 meters away on the ground. How fast is Agent Mulder moving away from you $\left(\frac{d x}{d t}\right)$ when he is 3 meters above the ground?

