10/31/11

- 1. Applications of the first derivative.
 - a) Find the interval(s) where the function is increasing and the interval(s) where the function is decreasing.

$$f(x) = x^{3} - 3x + 4$$

$$g(x) = \frac{1}{2x+3}$$

$$h(x) = (x - 5)^{\frac{2}{3}}$$

$$r(x) = x\sqrt{x+1}$$

b) Find any relative maxima and relative minima of the function.

$$f(x) = x^3 - 3x + 6$$
$$g(x) = \frac{x}{x+1}$$
$$h(x) = x\sqrt{x-4}$$

- 2. Applications of the second derivative.
 - a) Find any inflection points of the function, the interval(s) on which it is concave upward, and the interval(s) on which is is concave downward.

$$f(x) = x^3 - x$$
$$g(x) = \frac{x}{1-x}$$
$$h(x) = 2 + \frac{3}{x}$$

b) Determine if the given critical point(s) is a maximum or minimum using the given second derivative.

$$\begin{aligned} x &= 0, \ x = 1; \ f^{(2)}(x) = 2x - 1 \\ x &= 0; \ g^{(2)}(x) = 3x^2 + 1 \\ x &= 0; \ h^{(2)}(x) = -\frac{6(4x - 3)}{(2x + 3)^4} \end{aligned}$$

- c) Sketch the graph of a function with the following properties: f(0) = 0, f'(0) is undefined, and f''(x) < 0 if $x \neq 0$.
- 3. Find all asymptotes of the given function.

a)
$$f(x) = \frac{x+1}{2x-1}$$

b) $g(x) = \frac{2x}{x^2 + x - 2}$

c)
$$h(x) = 1 + \frac{2}{x-3}$$

d)
$$r(x) = \frac{1-x^2}{x^2+x}$$

4. Find the absolute maximum and absolute minimum of the function over the given domain (when such extrema exist).

- a) $f(x) = x^{\frac{2}{3}}$ over \mathbb{R}
- b) $g(x) = \frac{x}{1-x}$ over [2, 6]
- c) $h(x) = x^3 3x^2 1$ over [0,3]

0

d) $f(x) = \frac{x}{x^2+1}$ over \mathbb{R} .

5. Optimization.

- a) A stone thrown straight up from the roof of an 80-ft building has a height after t seconds of $h(t) = -16t^2 + 64t + 80$ ft. What is the maximum height reached by the stone?
- b) The demand equation for a product is p = -0.00042x + 6 for $0 \le x \le 12,000$. The cost function for the same product is $C(x) = 600 + 2x 0.00002x^2$ for $0 \le x \le 20,000$. How many should the company produce in order to maximize revenue?
- c) If an open box has a square base and a volume of 108 in^3 , find the dimensions that minimize the amount of material in the box.
- d) Find the radius and height of a right circular cylinder with closed ends and a volume of 36 in^3 that has a minimum surface area.
- e) Suppose the cost incurred for operating a cruise ship for one hour at v mph is $a + bv^3$ dollars, where a and b are positive constants. What speed will minimize operating costs?
- f) A book is to have pages with a printed area of 54 in² and margins of 0.5 in on the top, bottom, and right sides, and a margin of 1 in on the left. What dimensions will minimize the amount of paper used per page?
- 4. Exponential functions.
 - a) Simplify the expression:

$$\frac{(2x^3)(-4x^-2)}{\frac{(a^ma^{-n})^-2}{(a^{m+n})^2}}$$

b) Solve the equation for x:

$$5^{-x} = 5^3$$

$$4^{2x-1} = 4^{x+3}$$

$$7^{x-x^2} = \frac{1}{49^x}$$