NAME:

Information: Calculators are allowed but no other materials are permitted. Always show your work: problems with little or no work shown may receive little or no credit. You may find the quadratic formula useful:

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

1. Find the interval(s) on which the function $f(x)=\frac{x}{x^{2}+1}$ is increasing and the interval(s) on which it is decreasing.
2. Find all critical points of the function $f(x)=\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+2 x^{2}$ and determine if each is a relative maximum, relative minimum, or neither.
3. Is the function $f(x)=\frac{1}{5} x^{5}-3 x^{4}+6 x$ concave up or concave down over the interval $(0,9)$?
4. A function f has a critical point at $x=2$ and its second derivative is $f^{\prime \prime}(x)=\frac{6-2 x}{x^{4}}$. Determine if f has a relative maximum or a relative minimum at the critical point.
5. Find all asymptotes of the function $f(x)=\frac{x}{3-x}$.
6. Find all asymptotes of the function $g(x)=\frac{x^{2}-100}{x^{2}+x-90}$.
7. Find the absolute maximum and absolute minimum of the function $f(x)=\frac{1}{1+3 x^{2}-x^{3}}$ over the domain $[0,3]$. It may be useful to know that $1+3 x^{2}-x^{3} \neq 0$ when $0 \leq x \leq 3$.
8. The speed of a cheetah (kph) t seconds into its pursuit of a gazelle is given by $f(t)=\frac{1}{3} t^{3}-6 t^{2}+32 t$ for $0 \leq t \leq 10$. What are the maximum and minimum speeds attained by the cheetah over the 10 seconds of pursuit?
9. By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 8 ft . long and 5 ft . wide, find the dimensions that will maximize the volume of the box.
10. Solve the equation $4^{2 x-1}=64$.
