4:30 Wed. Review

Матн 148

FINAL REVIEW

DECEMBER 8, 2011

Limits and continuity including asymptotes.

1. Find the following limits, if they exist.

a)
$$\lim_{x \to 1} \frac{x-1}{x} = O$$

b)
$$\lim_{x \to 0} \frac{x-1}{x} \quad DN$$

c)
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 - 4} = \lim_{x \to -2} \frac{(x - 3)(x + 2)}{(x - 2)(x + 2)} = \frac{-5}{-4} = \frac{5}{4}$$

2. Determine if the function is continuous on the given interval.

- a) $f(x) = \frac{1}{x-1}$ over [-1,0] fixes is undefined then x=1, continuous everythere else b) $f(x) = \frac{x^2 x 6}{x^2 4}$ over [0,4] fixes is undefined then $x=\pm 2$, continuous everythere else

3. Identify the horizontal and vertical asymptotes of the function. Horizontal

a)
$$f(x) = \frac{x}{x^2 - 4}$$

b) $f(x) = \frac{3x - 1}{2x + 4}$
 $y=0$
 $y=-2$
 $x=-2$

The definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

4. Evaluate the limit $\lim_{h \to 0} \frac{\ln(1+h)}{h} = \frac{\partial}{\partial x} |x \times x|_{x=1} = \frac{1}{x} |x|_{x=1} = 1$

Differentiation. including the basic rules of section 3.1, the product rule, the quotient rule, and the chain rule.

5. Differentiate the function.

a)
$$f(x) = (3x-1)^{5}(x+2)^{2} \qquad f'(x) = |5(3x-1)^{4}(x+2)^{2} + 2(3x-1)^{5}(x+2)$$

b)
$$f(x) = \frac{1}{5x^{2}-x} \qquad f'(x) = -(10x-1)(5x^{2}-1)^{-2}$$

c)
$$f(x) = \frac{(x^{2}-1)^{3}}{\sqrt{x^{2}+4}} \qquad f'(x) = \left[6x(x^{2}-1)^{2}\sqrt{x^{2}+4} - (x^{2}-1)^{3}x(x^{2}+4)^{-\frac{1}{2}}\right](x^{2}+4)^{-1}$$

Implicit differentiation and related rates.

6. Find $\frac{dy}{dx}$ by implicit differentiation when $x^2 - xy^2 - 2y^4 = 13$.

7. A cylindrical coffee pot with a radius of 4 in. is being filled so that the level of coffee is rising at a rate of 0.4 in./sec. At what rate is coffee flowing into the coffee pot? (The volume of a cylinder of height h and radius r is $\pi r^2 h$).

Applications of the first and second derivative. Slopes of tangent lines. The first derivative and increasing and decreasing functions. The second derivative and concavity.

8. Find the slope of the tangent line to the curve $(x-1)^2 + y^2 = 5$ at the point (0,2).

9. Determine the intervals on which the function $f(x) = \frac{1}{x^2+1}$ is concave up and concave down.

Optimization. Relative and absolute extrema and the first and second derivative tests.

10. Find the absolute extrema of the function $f(x) = x^3 + x^2 - 2x$ over [-2, 2].

11. Find any relative extrema of the function with derivative $f(x) = \frac{x}{x^2+1}$ and determine if each is a minimum or maximum.

12. An open box has a square base and a volume of 108in.³. Find the dimensions that minimize the amount of material used to construct the box.

Working with exponential and logarithmic functions. Especially the laws of exponents on P. 331 and the laws of logarithms on P. 339.

13. Simplify the following expressions.

a)
$$\ln \left[\frac{xe^x}{(x-1)^4} \right] = \ln(xe^x) - \ln[(x-1)^4] = \ln x + x - 4\ln(x-1)$$

b) $(e^{x+1})^{\ln 2} = (e^{\ln 2})^{(x+1)} = 2^{x+1}$

Compound interest and exponential decay.

14. How much money was initially deposited in an account paying 6% annual interest, compounded monthly, if after 6 years the account is now worth \$8,000?

15. Potassium-40 decays with a half life of 1.3 billion years. How old is a rock sample which contains 32% of its original potassium-40?

Differentiating exponential and logarithmic functions. Including logarithmic differentiation.

16. Find the derivative of the function.

a)
$$f(x) = xe^{\frac{1}{x+1}}$$
 $f'(x) = e^{\frac{1}{x+1}} + x\left[\frac{-1}{(x+1)^2}\right]e^{\frac{1}{x+1}}$
b) $f(x) = \ln\left(\frac{1}{x^2}\right)$ $f'(x) = -2x^{-3}x^2 = -2x^{-1}$ or simplify to $f(x) = -2\ln x$
c) $f(x) = \ln\sqrt{x^3+1} = \frac{1}{2}\ln(x^{5}+1)$ $f'(x) = (\frac{1}{2})^3x^2(\frac{1}{x^{5}+1})$
d) $f(x) = \sqrt{3x+5}(2x-3)^4$ $\ln f(x) = \frac{1}{2}\ln(3x+5) + 4\ln(2x-3)$ $f'(x) = (\frac{3}{2})(\frac{1}{3x+5}) + 8(\frac{1}{2x-3})f(x)$
e) $f(x) = x^{x^2} \ln f(x) = x^2 \ln x$ $f'(x) = [2x\ln x + x^2(\frac{1}{x})]f(x) = [1+\ln x]2x^{x^2+1}$
Antiderivatives and the indefinite integral. Including initial value problems.

17. Evaluate the indefinite integral.

A

a)
$$\int 1 + x + \sqrt{x} dx = x + \frac{1}{2} x^2 + \frac{2}{3} x^{\frac{3}{2}} + C$$

b)
$$\int \frac{1}{x} dx = \ln[x] + C$$

c)
$$\int \frac{1}{x^2} - x^2 dx = -\frac{1}{\chi} - \frac{1}{3}\chi^3 + C$$

18. Solve the initial value problem.

a) $f'(x) = 4x + e^x - 2$ and f(1) = 0. $f(x) = 2x^2 + e^{x} - 2x + c$ O = f(1) = 2 + e - 2 + c = 0 c = -eb) $f'(x) = x^{\frac{2}{3}}$ and f(0) = 3. $f(x) = \frac{3}{5} \times \frac{5/3}{3} + c$. 3 = f(0) = c. $f(x) = \frac{3}{5} \times \frac{5/3}{3} + 3$ The definite integral and the Fundamental Theorem of Calculus. 19. Evaluate the definite integral. $f(x) = 2x^2 + e^{x} - 2x + c$ $f(x) = \frac{3}{5} \times \frac{5/3}{3} + 3$

The definite integral and the Fundamental Theorem of Calculus.

19. Evaluate the definite integral.

a)
$$\int_{0}^{1} 1 - x^{2} dx = x - \frac{1}{3}x^{3} \Big|_{0}^{2} = 1 - \frac{1}{3} = \frac{2}{3}$$

b) $\int_{1}^{e} \frac{1}{x} dx = \ln|x| \Big|_{1}^{e} = 1 - 0 = 1$
c) $\int_{\frac{1}{2}}^{2} \frac{1}{x^{2}} dx = -\frac{1}{x} \Big|_{\frac{1}{2}}^{2} = -\frac{1}{2} + 2 = \frac{3}{2}$

Integration by substitution. For definite and indefinite integrals.

20. Evaluate the integral

a)
$$\int_0^1 x e^{x^2 - 1} dx$$

b)
$$\int_0^2 \frac{\ln(2x + 1)}{2x + 1} dx$$

c)
$$\int_e^{e^2} \frac{1}{x \ln x} dx$$

Areas under and between curves.

21. Find the area between the curves over the given interval.

a)
$$y = x^2$$
 and $y = 2 - x^2$ over $[-1, 1]$

b) $y = x^3$ and x = y over [-1, 1]

	2		00	L+-	0 13
ړ(ز(۲ ز(-	fox 1= x2+1	2(x-1 9'-		7. V= T164	x2-
f"(-1) = 6-2 × f"(-1) = -2 <0	A	2(x-1)+2yy:=0 y': 1-x y': 1-x ++ (0,2) the slope is y': 2	1	$2x - (y^2 + 2xyy') - 8y^3y' = 0 \iff (2xy + 8y^3)y' = 2x - y' \iff y' = \frac{2x - y^2}{2xy + 8y^3}$ $\iff y' = \frac{2x - y^2}{2xy + 8y^3}$	148 FIL Final review 6. X1-Xy2-244=13
	er exr (*) (*) (*) (*)	"= O	200	- 6	4 =13
6 V X 1/4 1/4 1/4	fr(x)= -2x (x2+1)-2		5 SO AN : 6.4 TT INS	43 4 1	
	-0 (X2+1)	vi-	T Sec		
on cave	2			y xy v xy v +	
Contave up on (-a, -t) Contave down on (-d, -t) Contave down on (-t) 1/3	$(x_{5}+1)_{-5} = \frac{(x_{5}+1)_{2}}{(x_{5}+1)_{-5}} = \frac{(x_{5}+1)_{-5}}{(x_{5}+1)_{-5}}$			8y3)y, 2x-y2 2x-y2	
($= \frac{6x^{2}-2}{(x^{2}+1)^{2}}$ $= \frac{-2(x^{2}+1)}{(x^{2}+1)} + \frac{-2(x^{2}+1)^{2}}{(x^{2}+1)^{2}}$			11 22 24	
st -	t solut			2	
and (Its i a	+ 8x2(x2+1)-3			2	
	i.				

5				12.	-		10.
The offer	BOC PILE	M	Ma	L' CP	5 + 0	b	
1-00	0 10 10	(K)=	= $ $	XaX	(2) (-2-V (-2-V	(-2) (x)	(x) (x)
Q(E)=Qo 2-1.3 Q(E)= .32 = 2 0032 = 2	P(6)	2+	2× × × ×	= 10g	×1× × ×	··· · · · · · · · · · · · · · · · · ·	Xº X
A N with	$Min_{natural sten}^{(1)} = P_0(1+f_{n})^{n_{f}}$ $B000 = P(6) = P_0(1+f_{n})^{n_{f}}$	X3 864	$M(x) = x^2 + \frac{432}{x}$ $M(x) = x^2 + \frac{432}{x}$	- x2 y = 108 40	1. 2. 1		+ 2×
ut in t	(1+4)			S	1 00	+4 = - × 2	-2
2.13 + 1 3	136	M°C	> ***	×22 108	f(2)= 8+4-4= 8 4-Ams. f(2)= 8+4-4= 8 4-Ams. f(2)= x2.11	f(x)=0 (=> 3x2+2x-2=0 (-2)= -8+4+4=0 f(-2)= -8+4+4=0	f(x) = x(x2+x-2)=x(x+2)(x-1)
+ (.32 ()	No Star	6)7C	(x) x	tor	t (1)	-2=0	(+2)(
$Q(t) = Q_0 \ 2^{-\frac{1}{13}} \qquad (t \ in \ billions \ of \ years)$ $Q(t) = Q_0 \ 2^{-\frac{1}{13}} \qquad (t \ in \ billions \ of \ years)$ $\Rightarrow \ t = -\frac{(1\cdot3)\ln(.32)}{\ln 2} \approx 2.137$ $He \ rock \ is \ about \ 2.137 \ billion \ years \ old,$	$Min ~ articlal then directions are exexs P(t) = P_0(1+f_1)^{nt} BOCO = P(6) = P_0(1+f_2)^{36} => P_0 = BOCO(1+\frac{106}{12})$	$M''(K) = 2 + \frac{864}{x^3}$	$M'(x) = 0 \iff \frac{2x^3 - 432}{x^2} = 0$	Never undefined. CP: X=0. A min by 1st denutive test. V= x²y = 108 <5 y= 108 V= x²z (or x=0) V= 108 <5 y= 108 V= 108 (or x=0) V= 108 <5 y= 108	f(2) = 8 + 4 - 4 = 8 a Alos. max $f(-2 - 18) \approx 2.11$ $f(-2 - 18$	$f'(x) = 0 \iff 3x^2 + 2x - 2 = 0$ $f'(x) = 0 \iff 3x^2 + 2x - 2 = 0$ $f'(x) = -2 \pm \sqrt{4} + 2 = 0$	X-1)
of years	2008 ×	X X X IV	12 ×	- t	12	12	
	+1)a	2x3-432=0 x3=216 x=6 x=6	x2-41	132	6	0 2	
12.137 1d,	3/5	0 0 II	32 = 0		4	1001	
	-36	X mit	0		Alas.		
		mitrihun			min	2 L	81.14
		1				5-6	
				100		Ŧ	< ·
						J.	

$$20. a) \int_{0}^{1} xe^{x^{2} \cdot 1} dx = \int_{-1}^{0} \frac{1}{2} e^{4} du = \frac{1}{2} e^{4} \Big|_{-1}^{0} = \frac{1}{2} (e^{0} - e^{-1}) = \frac{1}{2} (1 - \frac{1}{e})$$

$$u = x^{2} - 1$$

$$\frac{du}{dx} = 2x + \frac{1}{2} du = x dx$$

$$b) \int_{0}^{2} \frac{1}{2x+1} dx = \int_{0}^{1} \frac{5}{2} u du = \frac{1}{4} u^{2} \Big|_{0}^{105} = \frac{1}{4} (h5)^{2}$$

$$(1 = \ln (2x+1))$$

$$\frac{du}{dx} = \frac{2}{2x+1} = \frac{1}{2} du = \frac{1}{2x+1} dx$$

$$c) \int_{e}^{e^{2}} \frac{1}{x \ln x} dx = \int_{1}^{2} \frac{1}{\sqrt{1}} du = \ln |u| \Big|_{1}^{2} = \ln 2 - \ln |1| \ln 2$$

$$u = \ln x$$

$$\frac{du}{dx} = \frac{1}{x} du = \frac{1}{x} dx$$

$$(1, a) = \frac{1}{x} dx = \int_{-1}^{1} 2 \cdot 2x^{2} dx$$

$$= 2x - \frac{3}{2} x^{3} \Big|_{-1}^{1}$$

$$= 2 - \frac{2}{3} - (-2 + \frac{1}{3}) = 4 - \frac{4}{3} = \frac{8}{3}$$

$$b) = y = x^{3} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{4} + \frac{1}{2} + \frac{1}{2} - \frac{1}{4}$$