1. a) Find the absolute extrema of $f(x)=x^{3}-6 x^{2}+9 x$ over the domain $[0,5]$.

Solution. Find the critical points by solving $f^{\prime}(x)=0$. The critical points are $x=1$ and $x=3$. Evaluate the function at the critical points and the end points: $f(0)=0, f(1)=4, f(3)=0$, and $f(5)=20$.
Therefore the absolute minimum value of the function over the interval $[0,5]$ is 0 (reached at $x=0$ and at $x=3$) and the absolute maximum over the interval is 20 (reached at $x=5$).
b) Find the absolute extrema of $g(x)=2 x^{3}-12 x^{2}+18 x+10$ over the domain $[0,5]$ (try to do this without differentiating).
Solution. Note that $g(x)=2 f(x)+10$ and thus $g^{\prime}(x)=2 f^{\prime}(x)$. This means that g has the same critical points as f. Evaluate $g(x)$ at the critical points and the end points: $g(0)=10, g(1)=18, g(3)=10$, and $g(5)=50$. Therefore the absolute minimum value of the function over the interval $[0,5]$ is 10 (reached at $x=0$ and at $x=3$) and the absolute maximum over the interval is 50 (reached at $x=5$).
2. By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps an open box may be made. If the cardboard is 15 in . long and 8 in . wide, find the dimensions of the box that will yield the maximum volume.
Solution. Let x be the length of the side of one of the squares to be cut away. The volume of the box is then $V(x)=x(15-2 x)(8-2 x)=4 x^{3}-46 x^{2}+120 x$. Note that the domain of x is $[0,4]$ since only these values make sense for this situation. We're looking for an absolute maximum for $V(x)$ over this domain. Solve $V^{\prime}(x)=0$ to find the critical points at $x=\frac{5}{3}$ and $x=6$. Only $x=\frac{5}{3}$ is in the domain. Evaluate $V(x)$ at $x=0, x=\frac{5}{3}$, and $x=4$ to find that the absolute maximum volume is $\frac{2450}{27}$, reached when $x=\frac{5}{3}$.
3. A Norman window has the shape of a rectangle surmounted by a semicircle. If a Norman window is to have a perimeter of 28 ft ., what dimensions will maximize the area of the window?

Solution. The perimeter of the window is $28=2 y+x+\pi x$. Solve for y to find

$$
y=\frac{28-(1+\pi) x}{2}
$$

The area of the window is $A=2 x y+\frac{\pi}{2} x^{2}$. Substituting in for y gives

$$
A(x)=28 x-(1+\pi) x^{2}+\frac{\pi}{2} x^{2}=28 x-\left(1+\frac{\pi}{2}\right) x^{2}
$$

Solve $A^{\prime}(x)=0$ to find the critical point at $x=\frac{28}{2+\pi}$. Examining the graph of $A(x)$ or using the first or second derivative tests verifies that $A(x)$ reaches a global maximum at $x=\frac{28}{2+\pi}$. The maximum area of the window is therefore $A\left(\frac{28}{2+\pi}\right)=\frac{392}{2+\pi}$.
4. World population is forecast to be

$$
P(t)=0.00074 t^{3}-0.0704 t^{2}+0.89 t+6.04 \quad(0 \leq t \leq 4)
$$

where t is measured in decades after 2000 and $P(t)$ is measured in billions. When will population peak according to this model?
Solution. Solve $P^{\prime}(t)=0$ to find $t \approx 7.12$ and $t \approx 56.3$ (the quadratic equation $t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ may be helpful). Neither of these points is in our given domain of $[0,4]$ so we just need to check the original function at the endpoints. We find that $P(0)=6.04$ and $P(4) \approx 8.52$. Therefore the maximum population over the domain of this model is 8.52 billion, reached at $t=4$ (the year 2040). Note that if the model could be extended for a couple of decades, then we would find a maximum value at $t \approx 7.12$

