1. a) Find the absolute extrema of $f(x)=x^{3}-6 x^{2}+9 x$ over the domain $[0,5]$.
b) Find the absolute extrema of $g(x)=2 x^{3}-12 x^{2}+18 x+10$ over the domain [0,5] (try to do this without differentiating).
2. By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps an open box may be made. If the cardboard is 15 in . long and 8 in . wide, find the dimensions of the box that will yield the maximum volume.
3. A Norman window has the shape of a rectangle surmounted by a semicircle. If a Norman window is to have a perimeter of 28 ft ., what dimensions will maximize the area of the window?

4. World population is forecast to be

$$
P(t)=0.00074 t^{3}-0.0704 t^{2}+0.89 t+6.04 \quad(0 \leq t \leq 4)
$$

where t is measured in decades after 2000 and $P(t)$ is measured in billions. When will population peak according to this model?

