1. a) Sketch the two curves $y=x^{2}-4$ and $y=3 x$ and find the points of intersection by solving the equation $x^{2}-4=3 x$.

b) Use the values of the definite integrals $\int_{-1}^{0} x^{2}-4 d x$ and $\int_{-1}^{0} 3 x d x$ to find the area between the two curves over the interval $[-1,3]$ (remember that areas are always positive).
c) Find the area between the two curves over the interval $[0,4]$ (again your answer should be a positive number).
d) What is the total area of the region enclosed by the two curves?
e) Evaluate the integral $\int_{-1}^{4} 3 x-\left(x^{2}-4\right) d x$.

Theorem 1. Suppose that f and g are functions such that $f(x) \geq g(x)$ for x in the interval $[a, b]$. Then the area between the graphs of f and g over the interval $[a, b]$ is

$$
\int_{a}^{b}[f(x)-g(x)] d x
$$

2. Let $f(x)=x^{2}-2 x-1$ and $g(x)=-e^{x}-1$. Use your calculator (or your neighbor's) to verify that $f(x) \geq g(x)$ over $[-1,1]$ and then find the area between the graphs of the two functions over $[-1,1]$.
3. a) Sketch the curves $y=x^{2}$ and $y=\sqrt{x}$, clearly labeling their points of intersection.

b) Find the area between the curves over the interval $[0,2]$.
c) Explain why neither of the integrals $\int_{0}^{2} x^{2}-\sqrt{x} d x$ or $\int_{0}^{2} \sqrt{x}-x^{2} d x$ is the area between the curves.
4. Economists have concluded that a country's oil consumption over the next 5 years will grow according to the formula $c(t)=20 e^{0.08 t}$ unless the government creates incentives for conservation. If the conservation incentives are adopted, then oil consumption is projected to grow according to the formula $c_{1}(t)=20 e^{0.05 t}$. Using these models, determine how much oil would be conserved over the next 5 years if the conservation incentives are adopted.
