GRAPHS AND LIMITS

1. Sketch a graph of the function, then use the graph to help find the limits.
a) $f(x)= \begin{cases}-x & \text { if } x<0 \\ x & \text { if } x>0\end{cases}$

b) $\lim _{x \rightarrow 0} f(x)=$
c) Is $f(0)$ defined?
2. Sketch a graph of the function, then use the graph to answer questions about the limits of the function.
a) $f(x)= \begin{cases}(x+1)^{2} & \text { if } x \leq 0 \\ x^{2}+1 & \text { if } x>0\end{cases}$

b) $\lim _{x \rightarrow-1} f(x)=$
c) $\lim _{x \rightarrow 0^{-}} f(x)=$
d) $\lim _{x \rightarrow 0^{+}} f(x)=$
3. Sketch a graph of the function, then use the graph to answer questions about the limits of the function.
a) $f(x)= \begin{cases}1-x & \text { if } x<1 \\ (x-2)^{2} & \text { if } x \geq 1\end{cases}$

b) $\lim _{x \rightarrow 0} f(x)=$
c) $\lim _{x \rightarrow 1^{-}} f(x)=$
d) $\lim _{x \rightarrow 1^{+}} f(x)=$
4. The altitude of a model rocket (in meters) t seconds after launch is given by

$$
h(t)= \begin{cases}40 t^{2} & \text { if } t \leq 2 \\ 160+160(t-2)-4(t-2)^{2} & \text { if } t>2\end{cases}
$$

a) Why do you think this is a piecewise function?
b) Sketch a graph of the rocket's height for $t \geq 0$.

c) Is $h(t)$ continuous? Should it be continuous?

