SLOPES AND RATES OF CHANGE

Definition (see p. 129 of the textbook). The **average rate of change** of f(x) as x changes from x_1 to x_2 (when $x_1 \neq x_2$) is

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

This is the same as the slope of the secant line through the points $(x_1, f(x_1))$ and $(x_2, f(x_2))$.

1. Shown below is a graph of the function $f(x) = 4x - x^2$. We will consider the average rate of change from $x_1 = 0$ to $x_2 = h$.

a) Sketch the secant line from (0, f(0)) to (4, f(4)) and calculate its slope.

- b) Sketch the secant line from (0, f(0)) to (3, f(3)) and calculate its slope.
- c) Sketch the secant line from (0, f(0)) to (2, f(2)) and calculate its slope.
- d) Sketch the secant line from (0, f(0)) to (1, f(1)) and calculate its slope.

Date: September 12, 2022.

Definition (see p. 139 of the textbook). The **instantaneous rate of change** (also called the **derivative**) of f(x) at x = a is

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

This is the same as the slope of the tangent line at the point (a, f(a)).

2. Continue working with the function $f(x) = 4x - x^2$. Our goal now is to find the instantaneous rate of change of f(x) at x = 0.

a) Does your work for problem 1 suggest an answer? Make a guess if you can.

b) Calculate the limit
$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
.

c) Find an equation for the tangent line (use the point (0,0) and the slope you just calculated). Add this line to the graph on page 1.

Definition. The difference quotient of f(x) is

$$\frac{f(x+h) - f(x)}{h}$$

Note that the derivative of f at x is the limit of the difference quotient as $h \to 0$.

- **3.** Calculate the difference quotient for the following functions and reduce the fraction. a) f(x) = 4x
 - b) $f(x) = x^2$

c)
$$f(x) = 4x - x^2$$