SLOPES AND RATES OF CHANGE

Definition (see p. 129 of the textbook). The average rate of change of $f(x)$ as x changes from x_{1} to $x_{2}\left(\right.$ when $\left.x_{1} \neq x_{2}\right)$ is

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

This is the same as the slope of the secant line thorugh the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$.

1. Shown below is a graph of the function $f(x)=4 x-x^{2}$. We wil consider the average rate of change from $x_{1}=0$ to $x_{2}=h$.

a) Sketch the secant line from $(0, f(0))$ to $(4, f(4))$ and calculate its slope.
b) Sketch the secant line from $(0, f(0))$ to $(3, f(3))$ and calculate its slope.
c) Sketch the secant line from $(0, f(0))$ to $(2, f(2))$ and calculate its slope.
d) Sketch the secant line from $(0, f(0))$ to $(1, f(1))$ and calculate its slope.

Definition (see p. 139 of the textbook). The instantaneous rate of change (also called the derivative) of $f(x)$ at $x=a$ is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

This is the same as the slope of the tangent line at the point $(a, f(a))$.
2. Continue working with the function $f(x)=4 x-x^{2}$. Our goal now is to find the instantaneous rate of change of $f(x)$ at $x=0$.
a) Does your work for problem 1 suggest an answer? Make a guess if you can.
b) Calculate the limit $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$.
c) Find an equation for the tangent line (use the point $(0,0)$ and the slope you just calculated). Add this line to the graph on page 1.

Definition. The difference quotient of $f(x)$ is

$$
\frac{f(x+h)-f(x)}{h}
$$

Note that the derivative of f at x is the limit of the difference quotient as $h \rightarrow 0$.
3. Calculate the difference quotient for the following functions and reduce the fraction.
a) $f(x)=4 x$
b) $f(x)=x^{2}$
c) $f(x)=4 x-x^{2}$

