HIGHER-ORDER DERIVATIVES

1. On the first worksheet we dealt with a mathematical model for the vertical position of a model rocket. The altitude (in meters) t seconds after launch is given by

$$
h(t)= \begin{cases}40 t^{2} & \text { if } t \leq 2 \\ 160+160(t-2)-4(t-2)^{2} & \text { if } t>2\end{cases}
$$

This is a piecewise function because the rocket engine stops 2 seconds into the flight, after which the rocket moves only under the influences of gravity and friction.
a) Calculate the derivative $h^{\prime}(t)$ and interpret what you find. Does the derivative exist at $t=2$?
b) Calculate the second derivative $h^{\prime \prime}(t)$ and interpret what you find. Does the second derivative exist at $t=2$?
c) Calculate the third derivative $h^{(3)}(t)$ and interpret what you find.
2. Real mathematical models for the absorption and metabolism of a drug are too complex for us right now, but we can work with a simplified example. Suppose the concentration of a intravenously inject drug (in mg / l) t minutes after injection is given by

$$
C(t)=\frac{10 t}{t^{2}+1}
$$

a) Calculate the derivative $C^{\prime}(t)$ and interpret what you find. What are the units of $C^{\prime}(t)$? For which values of t is $C^{\prime}(t)$ positive? For which values is it negative?
b) Use Desmos to plot the graph $y=C(t)$. Compare the features of the graph with your answers for part a.
c) Calculate the second derivative $C^{\prime \prime}(t)$. What are the units of $C^{\prime \prime}(t)$?

Challenge. Continue working with $C(t)$ from the last problem. Simplify $C^{\prime \prime}(t)$ and find the values of t for which $C^{\prime \prime}(t)$ is positive and the values for which it is negative. Compare with the graph of $y=C(t)$.

