APPLICATIONS OF THE DEFINITE INTEGRAL

1. The rate of memorizing information increases over time to a maximum, then decreases. Suppose this information memorization rate is modeled by $m(t)=-0.009 t^{2}+0.18 t$ words per minute (time t is measured in minutes).
a) When is the memorization rate at a maximum?
b) Make an educated guess about whether more words are memorized from time $t_{1}=0$ to time $t_{2}=10$ or from time $t_{1}=5$ to time $t_{2}=15$.
c) The number of words memorized from time t_{1} to time t_{2} is $\int_{t_{1}}^{t_{2}} m(t) d t$. Use this to find exact answers for the number of words memorized over the two intervals in the previous part. Were you right?
2. Solve the initial value problems. It may help to know that there are 5280 feet per mile.
a) A car accelerates at a constant rate from 0 mph to 60 mph in 30 sec . How far did it travel?
b) A car decelerates at a constant rate from 60 mph to 0 mph in 5 sec . How far did it travel?
