RATES OF CHANGE AND DERIVATIVES

Definition. The average rate of change of $f(x)$ as x changes from x_{1} to x_{2} (when $x_{1} \neq x_{2}$) is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

This is the same as the slope of the secant line through the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$.

1. Shown below is a graph of the function $f(x)=4 x-x^{2}$. We will consider the average rate of change from $x_{1}=0$ to x_{2} for different values of x_{2}.

a) Sketch the secant line from $(0, f(0))$ to $(4, f(4))$ and calculate its slope.
b) Sketch the secant line from $(0, f(0))$ to $(3, f(3))$ and calculate its slope.
c) Sketch the secant line from $(0, f(0))$ to $(2, f(2))$ and calculate its slope.
d) Sketch the secant line from $(0, f(0))$ to $(1, f(1))$ and calculate its slope.

Definition. The instantaneous rate of change (also called the derivative) of $f(x)$ at $x=a$ is

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

This is the same as the slope of the tangent line at the point $(a, f(a))$.
2. Continue working with the function $f(x)=4 x-x^{2}$. Our goal now is to find the instantaneous rate of change of $f^{\prime}(0)$.
a) Does your work for problem 1 suggest an answer? Make a guess if you can.
b) Evaluate a limit to find the exact value of $f^{\prime}(0)$.
c) Find an equation for the tangent line at the point $(0,0)$ (use the slope you just calculated). Add this line to the graph on page 1 .

Definition. The derivative of $f(x)$ is $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Challenge (skip this and come back if you have time). Calculate $f^{\prime}(x)$ for the following functions.
a) $f(x)=4 x$
b) $f(x)=x^{2}$
c) $f(x)=4 x-x^{2}$
3. The microscope equation says that for values of x near a

$$
f(x) \approx f^{\prime}(a)(x-a)+f(a)
$$

Note that this just says that the tangent line $y=f^{\prime}(a)(x-a)+f(a)$ must be close to the graph $y=f(x)$ near the point $(a, f(a))$. Your goal here is to use the microscope equation for the function $f(x)=x^{1 / 3}$ to estimate $1.12^{1 / 3}$ without using a calculator.
a) First we need a number a near 1.12 at which we can easily evaluate $f(a)$. What should we use?
b) Now we need $f^{\prime}(a)$. Use the fact that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$.
c) Find the microscope equation.
d) Use the microscope equation to estimate $1.12^{1 / 3}$ and compare your estimate with the more exact estimate of 1.0384988 .

