CALCULATING DERIVATIVES

Theorem. If $n \neq 0, \frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$

1. Find the derivatives:
a) $\frac{d}{d x}\left[x^{4}\right]$
b) $\frac{d}{d x}\left[x^{2023}\right]$
c) $\frac{d}{d x}\left[\frac{1}{x}\right]$
d) $\frac{d}{d x}[\sqrt[3]{x}]$
e) $\frac{d}{d x}\left[\frac{1}{\sqrt{x}}\right]$
2. Shown below is the graph $y=f(x)$ for $f(x)=e^{x}$. Sketch the graph $y=f^{\prime}(x)$ on the same axes. Be as accurate as you can working from just the graph.

Date: October 2, 2023.
3. Shown below is the graph $y=f(x)$ for $f(x)=\sin (x)$. Sketch the graph $y=f^{\prime}(x)$ on the same axes. Be as accurate as you can working from just the graph.

4. Shown below is the graph $y=f(x)$ for $f(x)=\cos (x)$. Sketch the graph $y=f^{\prime}(x)$ on the same axes. Be as accurate as you can working from just the graph.

