CALCULATING DERIVATIVES

Theorem. If $n \neq 0$, $\boxed{\frac{d}{dx}[x^n] = nx^{n-1}}$

1. Find the derivatives:

a) $\frac{d}{dx}[x^4]$

- b) $\frac{d}{dx}[x^{2023}]$
- c) $\frac{d}{dx} \left[\frac{1}{x}\right]$
- d) $\frac{d}{dx}[\sqrt[3]{x}]$
- e) $\frac{d}{dx} \left[\frac{1}{\sqrt{x}} \right]$

2. Shown below is the graph y = f(x) for $f(x) = e^x$. Sketch the graph y = f'(x) on the same axes. Be as accurate as you can working from just the graph.

Date: October 2, 2023.

3. Shown below is the graph y = f(x) for $f(x) = \sin(x)$. Sketch the graph y = f'(x) on the same axes. Be as accurate as you can working from just the graph.

4. Shown below is the graph y = f(x) for $f(x) = \cos(x)$. Sketch the graph y = f'(x) on the same axes. Be as accurate as you can working from just the graph.

