THE PRODUCT, QUOTIENT, AND CHAIN RULES

Theorem. Building blocks:
i. $\frac{d}{d x}[c]=0$ for any constant c
ii. $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}(n \neq 0)$
iii. $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
iv. $\frac{d}{d x}[\sin x]=\cos x$
v. $\frac{d}{d x}[\cos x]=-\sin x$

Product rule: $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$
Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{[g]^{2}}$
Chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$

1. Observe that $\frac{1}{x}-9=\frac{1-9 x}{x}=\left(\frac{1}{\sqrt{x}}-3\right)\left(\frac{1}{\sqrt{x}}+3\right)$. Use this to differentiate $f(x)=\frac{1}{x}-9$ in three different ways.
a) Differentiate directly: $\frac{d}{d x}\left[\frac{1}{x}-9\right]$
b) Use the quotient rule: $\frac{d}{d x}\left[\frac{1-9 x}{x}\right]$
c) Use the product rule: $\frac{d}{d x}\left[\left(\frac{1}{\sqrt{x}}-3\right)\left(\frac{1}{\sqrt{x}}+3\right)\right]$
d) All three of your solutions should be equal. Are they?
2. Find an equation for the line tangent to the graph $y=\sqrt{x^{2}+3 x}$ at the point $(1,2)$.
3. Use the chain rule (and any other appropriate rules) to find the following derivatives:
a) $\frac{d}{d x}\left[\left(x^{2}-1\right)^{5}\right]$
b) $\frac{d}{d x}\left[\frac{1}{\sqrt{7 x+3}}\right]$
c) $\frac{d}{d x}\left[e^{x^{2}}\right]$
d) $\frac{d}{d x}\left[\sin \left(\frac{e^{x}}{x}\right)\right]$
