THE PRODUCT, QUOTIENT, AND CHAIN RULES

Theorem. Building blocks: i. $\frac{d}{dx}[c] = 0$ for any constant cii. $\frac{d}{dx}[x^n] = nx^{n-1}$ ($n \neq 0$) iii. $\frac{d}{dx}[e^x] = e^x$ iv. $\frac{d}{dx}[\sin x] = \cos x$ **1.** Observe that $\frac{1}{x} - 9 = \frac{1 - 9x}{x} = \left(\frac{1}{\sqrt{x}} - 3\right) \left(\frac{1}{\sqrt{x}} + 3\right)$. Use this to differentiate $f(x) = \frac{1}{x} - 9$ in three different ways. a) Differentiate directly: $\frac{d}{dx} \left[\frac{1}{x} - 9\right]$

b) Use the quotient rule:
$$\frac{d}{dx} \left[\frac{1-9x}{x} \right]$$

c) Use the product rule:
$$\frac{d}{dx} \left[\left(\frac{1}{\sqrt{x}} - 3 \right) \left(\frac{1}{\sqrt{x}} + 3 \right) \right]$$

d) All three of your solutions should be equal. Are they?

Date: October 6, 2023.

2. Find an equation for the line tangent to the graph $y = \sqrt{x^2 + 3x}$ at the point (1,2).

3. Use the chain rule (and any other appropriate rules) to find the following derivatives: a) $\frac{d}{dx} [(x^2 - 1)^5]$

b)
$$\frac{d}{dx} \left[\frac{1}{\sqrt{7x+3}} \right]$$

c)
$$\frac{d}{dx} \left[e^{x^2} \right]$$

d)
$$\frac{d}{dx} \left[\sin\left(\frac{e^x}{x}\right) \right]$$