1.
$$\lim_{x \to 0} \frac{\cos(3x) - 1}{x^2} =$$

- (A) $\frac{9}{2}$ (B) $\frac{3}{2}$ (C) $-\frac{2}{3}$ (D) $-\frac{3}{2}$ (E) $-\frac{9}{2}$

3.
$$\int_{e^{-3}}^{e^{-2}} \frac{1}{x \log x} \, dx =$$

- (A) 1 (B) $\frac{2}{3}$ (C) $\frac{3}{2}$ (D) $\log(\frac{2}{3})$ (E) $\log(\frac{3}{2})$

- 7. The figure above shows the graph of the derivative f' of a function f, where f is continuous on the interval [0, 4] and differentiable on the interval (0, 4). Which of the following gives the correct ordering of the values f(0), f(2), and f(4)?
 - (A) f(0) < f(2) < f(4)
 - (B) f(0) < f(4) = f(2)
 - (C) f(0) < f(4) < f(2)
 - (D) f(4) = f(2) < f(0)
 - (E) f(4) < f(0) < f(2)
- 9. Let g be a continuous real-valued function defined on \mathbb{R} with the following properties.

$$g'(0) = 0$$

$$g''(-1) > 0$$

$$g''(x) < 0$$
 if $0 < x < 2$.

Which of the following could be part of the graph of g?

(A)

(D)

(E)

(C)

- 13. If f is a continuously differentiable real-valued function defined on the open interval (-1, 4) such that f(3) = 5and $f'(x) \ge -1$ for all x, what is the greatest possible value of f(0)?
 - (A) 3
- (B) 4
- (C) 5
- (D) 8
- (E) 11
- 14. Suppose g is a continuous real-valued function such that $3x^5 + 96 = \int_c^x g(t) dt$ for each $x \in \mathbb{R}$, where c is a constant. What is the value of c?
 - (A) -96
- (B) -2
- (C) 4
- (D) 15
- (E) 32
- 21. What is the value of $\int_{-\pi/4}^{\pi/4} \left(\cos t + \sqrt{1 + t^2} \sin^3 t \cos^3 t\right) dt$?
 - (A) 0

- (B) $\sqrt{2}$ (C) $\sqrt{2} 1$ (D) $\frac{\sqrt{2}}{2}$ (E) $\frac{\sqrt{2} 1}{2}$

- 25. The graph of the <u>derivative</u> h' is shown above, where h is a real-valued function. Which of the following open intervals contains a value c for which the point (c, h(c)) is an inflection point of h?
 - (A) (-2, -1)
- (B) (-1,0)
- (C) (0,1)
- (D) (1, 2)
- (E) (2,3)

- $32. \qquad \frac{d}{dx} \int_{r^3}^{x^4} e^{t^2} dt =$

- (A) $e^{x^6} \left(e^{x^8 x^6} 1 \right)$ (B) $4x^3 e^{x^8}$ (C) $\frac{1}{\sqrt{1 e^{x^2}}}$ (D) $\frac{e^{x^2}}{x^2} 1$ (E) $x^2 e^{x^6} \left(4xe^{x^8 x^6} 3 \right)$

How fast, in meters per second, will the top end of the ladder be sliding downward at the moment the top end is 3 meters above the ground?

(A) $12\sqrt{2}$

(B) $6\sqrt{2}$

(C) $4\sqrt{2}$ (D) $\frac{1}{2\sqrt{2}}$ (E) $\frac{2}{3}$