1. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x\to 1^+} \frac{x^2}{1-x^2}$

Solution. $-\infty$

2. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x\to\infty} \frac{6x^2-x+1}{2x^2+7x}$

Solution. 3

3. Is the function $f(\theta) = \begin{cases} \sin \theta & \text{if } \theta \le 0 \\ 1 - \cos \theta & \text{if } \theta > 0 \end{cases}$ continuous at x = 0? Explain why or why not.

Solution. The function is continuous because $\lim_{\theta \to 0} \sin \theta = \lim_{\theta \to 0} 1 - \cos \theta$.

4. Use the definition of the derivative to find f'(2) for $f(x) = (x-1)^2$.

Solution. $f'(2) = \lim_{h \to 0} \frac{(2+h-1)^2 - (2-1)^2}{h} = \lim_{h \to 0} \frac{h^2 + 2h + 1 - 1}{h} = 2$

5. Is the function $f(x) = \frac{x+1}{x^2-1}$ continuous at x=1? Explain why or why not.

Solution. The function is not defined at x=1 and so cannot be continuous at x=1.

6. Is the function f(x) = |x-2| differentiable at x=2? Explain why or why not.

Solution. The function is not differentiable at x=2 because it has a cusp at x=2.

7. Find the slope of the tangent line to the curve $y + y^3 = 2x^2 - 8$ at the point (3,2).

Solution. $\frac{12}{13}$

8. Find the second derivative of the function $f(x) = \cos(x^2)$.

Solution. $f''(x) = -2\sin(x^2) - 4x^2\cos(x^2)$

9. A particle moves along the curve $x^2 + y^2 = 25$. When the particle reaches the point (3,4) its x-coordinate is increasing at a rate of 8 m/s. At what rate is the y-coordinate changing at this moment?

Solution. -6 m/s

10. A cylinder with volume 64π cm³, radius r, and height h is being crushed so that $\frac{dh}{dt}=-3$ cm/s (and its volume, given by $V=\pi r^2 h$, remains constant). Find $\frac{dr}{dt}$, the rate at which the radius is changing, when r=8 cm.

Solution. 12 cm/s

11. Find the derivative of the function $g(x) = \int_1^{3x} t^2 (1-t)^2 dt$

Solution. $g'(x) = 3(3x)^2(1-3x)^2$

12. Use the Intermediate Value Theorem to show that the equation $2(x^3 + 17)^{\frac{1}{2}} - 9 = 0$ has a solution between -1 and 2.

Solution. Let $f(x) = 2(x^3 + 17)^{\frac{1}{2}} - 9$. The function f is continuous over [-1,2], f(-1) < 0, and f(2) > 0. Therefore by the IVT there is some c in (-1,2) such that f(c) = 0.

13. Find the absolute maximum and absolute minimum values of $f(x) = x - \sin(x)$ over the interval $[-\pi, \pi]$.

Solution. Max: (π, π) . Min: $(-\pi, -\pi)$.

14. A right triangle has base length x and height y satisfying the equation 2x + y = 12. Find the dimensions x and y that maximize the area of the triangle.

Solution. x = 3 and y = 6

15. Sketch the graph of $f(x) = \frac{x^2 - 1}{x^2 + 1}$. Clearly indicate the location of all axis intercepts, asymptotes, and local extremes.

Solution.

16. The velocity of a particle at time t is given by the function $v(t) = 3 - 6t^2$ and after 1 second its position is p(1) = 5. Find an equation for the position of the particle at time t.

Solution. $p(t) = 3t - 2t^3 + 4$

17. Find the average value of the function $f(x) = (2-x)^4$ over the interval [0,2].

Solution. $\frac{16}{5}$

18. Find the area above the curve $y = 2x + x^2$ below the x-axis.

Solution. $\frac{4}{3}$ ($-\frac{4}{3}$ is also acceptable).

19. The velocity of an object at time t is $v(t) = \frac{t}{2} - 1$. Find the total distance traveled from t = 0 to t = 4.

Solution. 2

20. Evaluate the integral $\int \frac{\cos x}{\sqrt{\sin x}} dx$.

Solution. $2\sqrt{\sin x} + C$

21. Evaluate the integral $\int_2^3 (10-5x)^4 dx$.

Solution. 125