1. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}+1}$

Solution. 0
2. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow 0} \frac{|x|}{x}$

Solution. $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1 \neq 1=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$ therefore $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.
3. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$

Solution. 6
4. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow \frac{\pi}{6}} \frac{1}{(\sin x)^{2}}$

Solution. 4
5. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-\infty} \frac{3 x+5}{x-4}$

Solution. 3
6. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-\infty} 1-x^{2}$

Solution. $-\infty$
7. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow \infty} \sqrt{x^{2}+2 x}-x$

Solution. 1
8. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow 5^{-}} \frac{x+1}{x-5}$

Solution. $-\infty$
9. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow 1^{-}} \frac{\sin \left(\frac{\pi}{2} x\right)}{1-x}$

Solution. ∞
10. Use the $\epsilon \delta$ definition of the limit to prove that $\lim _{x \rightarrow 1}(4 x-5)=-1$.

Solution. Let $\epsilon>0$. If $|x-1|<\frac{\epsilon}{4}$, then $4|x-1|<\epsilon$. It then follows that $|4 x-4|<\epsilon$ and, consequently, $|4 x-5-(-1)|<\epsilon$. Therefore by definition $\lim _{x \rightarrow 1}(4 x-5)=-1$.
11. Let $f(x)=\left\{\begin{array}{ll}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{array}\right.$ and let $g(x)=x^{2}$. Find $\lim _{x \rightarrow 0}(f \circ g)(x)$ or explain why the limit doesn't exist.

Solution. $(f \circ g)(x)=1$ for all x. Therefore $\lim _{x \rightarrow 0}(f \circ g)(x)=1$.
12. Find all horizontal and vertical asymptotes of the function $f(x)=\frac{2 x^{2}-2 x}{x^{2}-1}$

Solution. HA: $y=2$. VA: $x=-1$.
13. Find the value(s) of c that make the function continuous: $f(x)= \begin{cases}x^{2}+c^{2} & \text { if } x<4 \\ 2 c x & \text { if } x \geq 4\end{cases}$

Solution. $c=4$
14. Is the function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{array}\right.$ continuous at $x=1$? Explain why or why not.

Solution. $f(1)=1 \neq 2=\lim _{x \rightarrow 1} f(x)$ so the function is not continuous at $x=1$.
15. Use the intermediate value theorem to show that the equation $x^{4}-4 x^{2}+2=0$ has a solution.

Solution. Let $f(x)=x^{4}-4 x^{2}+2$. The function f is continuous at all x and $f(0)=2>0$ while $f(1)=-1<0$. Therefore by the IVT there is a number c in the interval $(0,1)$ such that $f(c)=0$. This c is a solution to the original equation.
16. Use the intermediate value theorem to show that the equation $\cos (x)-\sqrt{x}=0$ has a solution in the interval $\left(0, \frac{\pi}{2}\right)$

Solution. Let $f(x)=\cos (x)-\sqrt{x}$. The function f is continuous on $[0, \infty)$ and $f(0)=1>0$ while $f\left(\frac{\pi}{2}\right)=-\sqrt{\frac{\pi}{2}}<0$. Therefore by the IVT there is a number c in the interval $\left(0, \frac{\pi}{2}\right)$ such that $f(c)=0$. This c is a solution to the original equation.

