Матн 157

1. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x \to -1} \frac{x+1}{x^2+1}$

Solution. 0

2. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x\to 0} \frac{|x|}{x}$

Solution. $\lim_{x \to 0^-} \frac{|x|}{x} = -1 \neq 1 = \lim_{x \to 0^+} \frac{|x|}{x}$ therefore $\lim_{x \to 0} \frac{|x|}{x}$ does not exist.

3. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$

Solution. 6

4. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x \to \frac{\pi}{6}} \frac{1}{(\sin x)^2}$

Solution. 4

5. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x \to -\infty} \frac{3x+5}{x-4}$ Solution. 3

6. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x \to -\infty} 1 - x^2$

Solution. $-\infty$

7. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x \to \infty} \sqrt{x^2 + 2x} - x$

Solution. 1

8. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x\to 5^-} \frac{x+1}{x-5}$

Solution. $-\infty$

9. Find the limit (either a number, ∞ , or $-\infty$) or explain why it does not exist: $\lim_{x \to 1^-} \frac{\sin(\frac{\pi}{2}x)}{1-x}$

Solution. ∞

10. Use the $\epsilon \delta$ definition of the limit to prove that $\lim_{x \to 1} (4x - 5) = -1$.

Solution. Let $\epsilon > 0$. If $|x - 1| < \frac{\epsilon}{4}$, then $4|x - 1| < \epsilon$. It then follows that $|4x - 4| < \epsilon$ and, consequently, $|4x - 5 - (-1)| < \epsilon$. Therefore by definition $\lim_{x \to 1} (4x - 5) = -1$.

11. Let $f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$ and let $g(x) = x^2$. Find $\lim_{x \to 0} (f \circ g)(x)$ or explain why the limit doesn't exist.

Solution. $(f \circ g)(x) = 1$ for all x. Therefore $\lim_{x \to 0} (f \circ g)(x) = 1$.

12. Find all horizontal and vertical asymptotes of the function $f(x) = \frac{2x^2 - 2x}{x^2 - 1}$ Solution. HA: y = 2. VA: x = -1. **13.** Find the value(s) of c that make the function continuous: $f(x) = \begin{cases} x^2 + c^2 & \text{if } x < 4 \\ 2cx & \text{if } x \ge 4 \end{cases}$

Solution. c = 4

14. Is the function $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$ continuous at x = 1? Explain why or why not.

Solution. $f(1) = 1 \neq 2 = \lim_{x \to 1} f(x)$ so the function is not continuous at x = 1.

15. Use the intermediate value theorem to show that the equation $x^4 - 4x^2 + 2 = 0$ has a solution.

Solution. Let $f(x) = x^4 - 4x^2 + 2$. The function f is continuous at all x and f(0) = 2 > 0 while f(1) = -1 < 0. Therefore by the IVT there is a number c in the interval (0, 1) such that f(c) = 0. This c is a solution to the original equation.

16. Use the intermediate value theorem to show that the equation $\cos(x) - \sqrt{x} = 0$ has a solution in the interval $\left(0, \frac{\pi}{2}\right)$

Solution. Let $f(x) = \cos(x) - \sqrt{x}$. The function f is continuous on $[0, \infty)$ and f(0) = 1 > 0 while $f(\frac{\pi}{2}) = -\sqrt{\frac{\pi}{2}} < 0$. Therefore by the IVT there is a number c in the interval $(0, \frac{\pi}{2})$ such that f(c) = 0. This c is a solution to the original equation.