Instructions: Calculators, notes, cell phones, or other materials are not permitted. Show all your work: even correct answers may receive little or no credit if a method of solution is not shown.

1. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-1} \frac{x+1}{x^{2}+1}$
2. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow 0} \frac{|x|}{x}$
3. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$
4. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow \frac{\pi}{6}} \frac{1}{(\sin x)^{2}}$
5. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-\infty} \frac{3 x+5}{x-4}$
6. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-\infty} 1-x^{2}$
7. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow \infty} \sqrt{x^{2}+2 x}-x$
8. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow 5^{-}} \frac{x+1}{x-5}$
9. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow 1^{-}} \frac{\sin \left(\frac{\pi}{2} x\right)}{1-x}$
10. Use the $\epsilon \delta$ definition of the limit to prove that $\lim _{x \rightarrow 1}(4 x-5)=-1$.
11. Let $f(x)=\left\{\begin{array}{ll}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{array}\right.$ and let $g(x)=x^{2}$. Find $\lim _{x \rightarrow 0}(f \circ g)(x)$ or explain why the limit doesn't exist.
12. Find all horizontal and vertical asymptotes of the function $f(x)=\frac{2 x^{2}-2 x}{x^{2}-1}$
13. Find the value(s) of c that make the function continuous: $f(x)= \begin{cases}x^{2}+c^{2} & \text { if } x<4 \\ 2 c x & \text { if } x \geq 4\end{cases}$
14. Is the function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{array}\right.$ continuous at $x=1$? Explain why or why not.
15. Use the intermediate value theorem to show that the equation $x^{4}-4 x^{2}+2=0$ has a solution.
16. Use the intermediate value theorem to show that the equation $\cos (x)-\sqrt{x}=0$ has a solution in the interval $\left(0, \frac{\pi}{2}\right)$
