NAME:
Instructions: Calculators, notes, cell phones, and other other materials are not permitted. Additional scratch paper is available at the front of the class. Show all your work: even correct answers may receive little or no credit if a method of solution is not shown. You may find the following useful:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Definition. $\lim _{x \rightarrow a} f(x)=L$ if for every number $\epsilon>0$ there is a number $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$.

1. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x}{x^{2}-4}$
2. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-1^{+}} \frac{x}{1-x^{2}}$
3. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-2} \frac{x^{2}+3 x+2}{x+2}$
4. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{h \rightarrow 0} \frac{\sqrt{4+h^{2}}-2}{h^{2}}$
5. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow 1} \frac{|1-x|}{x}$
6. Find the limit (either a number, ∞, or $-\infty$) or explain why it does not exist: $\lim _{x \rightarrow-\infty} \frac{x^{2}-x}{1-3 x^{3}}$
7. Find all the vertical asymptotes of the function $f(x)=\frac{2 x-4}{x^{2}-2 x}$
8. If $\frac{1}{x^{2}+1} \leq f(x) \leq 1+x^{2}$ for all x in the interval $(-1,1)$, what is $\lim _{x \rightarrow 0} f(x)$?
9. On what interval(s) is the function $f(x)=\sqrt{1-x^{2}}$ continuous?
10. Is the function $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{2 x} & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{array}\right.$ continuous at $x=0$? Explain why or why not.
11. Find the value of c that makes the function f continuous: $f(x)= \begin{cases}2 x-1 & \text { if } x \geq c \\ x^{2} & \text { if } x<c\end{cases}$
12. Show that the equation $\sqrt{3-x}=x^{3}$ has a solution in the interval $[-1,2]$.
13. Use the $\epsilon-\delta$ definition of the limit to prove that $\lim _{x \rightarrow 1} \frac{3 x+5}{2}=4$.
14. Let $f(x)=\cos x$ and $g(x)=\left\{\begin{array}{ll}\pi & \text { if } x<1 \\ -\pi & \text { if } x \geq 1\end{array}\right.$. Is the composite function $f \circ g$ continuous at $x=1$? Explain why or why not.
