NAME:

INSTRUCTIONS: Calculators, notes, cell phones, and other other materials are not permitted. Additional scratch paper is available at the front of the class. Show all your work: even correct answers may receive little or no credit if a method of solution is not shown. You may find the following useful:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→∞} 2x² - x/x² - 4
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→-1} + x/(1 - x²)
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→-2} x² + 3x + 2/(x + 2)
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→-2} x² + 3x + 2/(x + 2)
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→-2} x(4 + h² - 2)/h²
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→1} (1 - x)/h²
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→1} (1 - x)/x
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→1} (1 - x)/x
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→1} (1 - x)/x
Find the limit (either a number, ∞, or -∞) or explain why it does not exist: lim_{x→1} x² - x/(1 - 3x³)
Find all the vertical asymptotes of the function f(x) = 2x - 4/(x² - 2x)

8. If
$$\frac{1}{x^2+1} \le f(x) \le 1+x^2$$
 for all x in the interval $(-1,1)$, what is $\lim_{x \to 0} f(x)$?

9. On what interval(s) is the function $f(x) = \sqrt{1 - x^2}$ continuous?

10. Is the function $f(x) = \begin{cases} \frac{\sin x}{2x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}$ continuous at x = 0? Explain why or why not.

11. Find the value of c that makes the function f continuous: $f(x) = \begin{cases} 2x - 1 & \text{if } x \ge c \\ x^2 & \text{if } x < c \end{cases}$

12. Show that the equation $\sqrt{3-x} = x^3$ has a solution in the interval [-1,2].

13. Use the ϵ - δ definition of the limit to prove that $\lim_{x \to 1} \frac{3x+5}{2} = 4$.

14. Let $f(x) = \cos x$ and $g(x) = \begin{cases} \pi & \text{if } x < 1 \\ -\pi & \text{if } x \ge 1 \end{cases}$. Is the composite function $f \circ g$ continuous at x = 1? Explain why or why not.