Name:

Instructions: Calculators, notes, cell phones, or other materials are not permitted. Show all your work: even correct answers may receive little or no credit if a method of solution is not shown.

1. Use the definition of the derivative to calculate $f^{\prime}(4)$ for $f(x)=\sqrt{x}$. Hint: you do not need to find $f^{\prime}(x)$, just $f^{\prime}(4)$.
2. Find the slope of the line tangent to the curve $y=x \sin (x)$ at the point $(\pi, 0)$.
3. Sketch the graph of a function that is continuous at 0 but not differentiable at 0 .
4. The graph $y=f(x)$ is shown. Use this graph to sketch the graph of $f^{\prime}(x)$ on the same axes. Be as accurate as you can with the x-axis intercepts but don't worry about the vertical scale.

5. Differentiate $f(x)=\sqrt{1+x^{2}}$.
6. Differentiate $f(x)=\frac{\tan x}{x}$.
7. Use a linear approximation to $f(x)=\sqrt[3]{x}$ to estimate $\sqrt[3]{10}$. Hint: $\sqrt[3]{8}=2$.
8. The height (in meters) of a rocket t seconds after launch is given by $h(t)=160+160(t-2)-4(t-2)^{2}$. What is the velocity of the rocket 22 seconds after launch?
9. Use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y \cos (x)=x \cos (y)$.
10. Find an equation for the tangent line to the ellipse $x^{2}+4 y^{2}=40$ at the point $(2,3)$.
11. A zeppelin flying at an altitude of 3 km at a speed of $50 \mathrm{~km} / \mathrm{hr}$ passes directly over Gonzaga. How fast is the distance from Gonzaga to the zeppelin increasing when the zeppelin is 5 km away (that is, the diagonal from Gonzaga to the zeppelin is 5 km$)$?
