Name:

Instructions: Answer all nine of the following problems. Calculators, notes, cell phones, or other materials are not permitted. Show all your work: even correct answers may receive little or no credit if a method of solution is not shown.

1. Sketch the graph of $f(x)=x+\frac{4}{x}$. Clearly indicate the location of all axis intercepts, asymptotes, and local extremes (if any exist).
2. Find the absolute maximum and minimum values of $f(x)=x^{3}-3 x+1$ over the interval $[0,3]$.
3. The graph of the derivative of a function f is shown.

a) What are the critical numbers of f ?
d) Determine if each critical number is a local maximum, a local minimum, or neither.
4. A farmer with 160 ft of fence wishes to use the fence to enclose a rectangular area and then divide the area in half by running a length of fence parallel to one of the edges. What is the largest possible total area the farmer can enclose?
5. Find the interval(s) on which the function $f(x)=x^{4}-2 x^{3}+3$ is concave downward.
6. Does there exist a continuous function on the interval $[0,2]$ such that $f(0)=0, f(2)=7$, and $f^{\prime}(x) \leq 2$ for all x ? Justify your answer.
7. Newton's method with $x_{0}=2$ is to be used to find an (approximate) root of $x^{3}-2=0$. Calculate x_{2} (there is no need to simplify your answer).
8. Determine the most general antiderivative of the function $g(x)=\frac{3}{\sqrt{x}}$.
9. Find f if $f^{\prime \prime}(x)=\sin x, f^{\prime}(\pi)=0$, and $f(0)=1$.
