Name(s):

Definition 1. A function f is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

It is important to realize that this means all 3 of the following things happen:

1. $f(a)$ is defined;
2. $\lim _{x \rightarrow a} f(x)$ exists;
3. $\lim _{x \rightarrow a} f(x)=f(a)$.
4. Explain why the following function is not continuous at $a=2$.
a) $f(x)=\frac{1}{2-3 x+x^{2}}$
b) $g(x)=\frac{2-x}{2-3 x+x^{2}}$
c) $\quad h(x)= \begin{cases}\frac{2-x}{2-3 x+x^{2}} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}$
5. What value c would make the function continuous at $a=0$?
a) $f(x)= \begin{cases}c-x^{2} & \text { if } x \geq 0 \\ \cos x & \text { if } x<0\end{cases}$
b) $g(x)= \begin{cases}\frac{\sqrt{4+x}-2}{x} & \text { if } x \neq 0 \\ c & \text { if } x=0\end{cases}$
6. Find the points at which the function $f(x)=\frac{1}{1-\cos x}$ is not continuous.
