1. ACME has determined that if they charge a price of x dollars per widget, then they will sell $\frac{10000}{1+x^{2}}$ widgets.
a) Find a function for the (gross) profit $P(x)$ of the sale of widgets at price x.
b) What are the units of $P^{\prime}(x)$? Calculate $P^{\prime}(x)$.
c) What does it mean if $P^{\prime}(x)>0$? On what interval is $P^{\prime}(x)>0$?
d) What does it mean if $P^{\prime}(x)<0$? On what interval is $P^{\prime}(x)<0$?
e) What price should ACME charge in order to maximize their profit?
2. Find an equation for the tangent line to $f(x)=x \cos x \sin x$ at the point $\left(\frac{\pi}{4}, \frac{\pi}{8}\right)$.
3. Calculate the derivative $\frac{\mathrm{d}}{\mathrm{d} x}\left[\frac{\sin 2 x}{x}\right]$ (you may want to use the double angle formula $\sin 2 x=2 \sin x \cos x$).
4. Let f be a differentiable function.
a) Use the product rule to find $\frac{\mathrm{d}}{\mathrm{d} x}\left[(f(x))^{2}\right]$ (in terms of f and f^{\prime}).
b) Use the product rule to find $\frac{\mathrm{d}}{\mathrm{d} x}\left[(f(x))^{3}\right]$ (in terms of f and f^{\prime}).
c) Use the product rule to find $\frac{\mathrm{d}}{\mathrm{d} x}\left[(f(x))^{4}\right]$ (in terms of f and f^{\prime}).
d) Make a guess about the general formula for $\frac{\mathrm{d}}{\mathrm{d} x}\left[(f(x))^{n}\right]$.
