1. Sketch the graph of a function that has a local maximum at -5 , a critical number that is not a local extreme at -1 , and local minimum at 3 .

2. Find the critical numbers of the function and determine if each is a local maximum, local minimum, or neither:

$$
g(x)=3 x^{4}-8 x^{3}+6 x^{2}-2
$$

3. Find the critical numbers of the function and determine if each is a local maximum, local minimum, or neither:

$$
f(x)=\left|x^{2}-2 x\right|
$$

Theorem (Extreme Value Theorem). If $f$ is continuous on a closed interval $[a, b]$, then $f$ attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers $c$ and $d$ in $[a, b]$.

Method. To find the absolute extreme values of a continuous function $f$ over and interval $[a, b]$ :

1. Find the critical numbers for $f$ that lie in the interval $[a, b]$.
2. Evaluate the function at these critical numbers and at $a$ and $b$.
3. The largest value obtained in the previous step is the absolute maximum, the smallest is the absolute minimum.
4. Find the absolute maximum and minimum values of the function $g(x)=3 x^{4}-8 x^{3}+6 x^{2}-2$ over the interval [ $\left.-1,2\right]$.
5. Find the absolute maximum and minimum values of the function $f(x)=\left|x^{2}-2 x\right|$ over the interval [1, 4].
6. Prove that $f(x)=x^{3}+x^{2}+x+1$ has no local extremes.
