

1. Use the graph above to place the definite integrals in order (by their values) without evaluating the integrals:
a) $\int_{0}^{\frac{1}{2}} 2 t^{3}-11 t^{2}+17 t-6 d t$
b) $\int_{0}^{1} 2 t^{3}-11 t^{2}+17 t-6 d t$
c) $\int_{0}^{\frac{5}{2}} 2 t^{3}-11 t^{2}+17 t-6 d t$
b) $\int_{0}^{4} 2 t^{3}-11 t^{2}+17 t-6 d t$
2. Define a new function $F(x)=\int_{0}^{x} 2 t^{3}-11 t^{2}+17 t-6 d t$
a) Try to identify the local extremes of $F(x)$ by interpreting $F(x)$ as a combination of areas under the graph in Figure 1. Recall that local extremes occur when F switches from increasing to decreasing or from decreasing to increasing. (It may help to go on to part b and then come back to this part).
b) Evaluate $F(1), F(2)$, and $F(3)$.
c) Evaluate the integral to find an expression for $F(x)$ that doesn't involve integration.
c) Find the local extremes of $F(x)$ using the methods of chapter 3. Hint: the graph $y=2 t^{3}-11 t^{2}+17 t-6$ crosses the x-axis at $t=\frac{1}{2}, t=2$, and $t=3$, hence $2 t^{3}-11 t^{2}+17 t-6$ has factors $2 t-1, t-2$ and $t-3$.
3. The Fresnel function S is defined as $S(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$. Do not try to evaluate this integral to find an expression for $S(x)$ (no one has found a good way to do this yet).
a) Let $F(t)$ be an antiderivative of $f(t)=\sin \left(t^{2}\right)$ (so $F^{\prime}(t)=f(t)$). Use the evaluation theorem to express $S(x)$ in terms of F.
b) Differentiate your answer for part a to find $S^{\prime}(x)$.
c) Find the location of a local maximum of S and a local minimum of S.
