1. Evaluate the indefinite integral $\int \frac{1}{x \ln x} d x$.
2. Use logarithmic differentiation to diffrentiate $y=\sqrt[4]{\frac{x^{2}+1}{x^{2}-1}}$.

The natural logarithm function is one-to-one, hence it has an inverse. That inverse is called the natural exponential function (which we'll spend more time with tomorrow) and is denoted e^{x}. The definition of inverse function means that $e^{x}=y \Longleftrightarrow \ln y=x$.
3. Sketch the curve $y=\ln x$ and then use the fact that the $y=e^{x}$ is the reflection of $y=\ln x$ through $y=x$ to sketch the curve $y=e^{x}$.

4. Calculate $\frac{d}{d x}\left[e^{x}\right]$. Hint: use either implicit differentiation or the formula for calculating derivatives of inverses.
5. Evaluate the indefinite integral $\int e^{x} d x$.

