1. Approximate \(\int_{-2}^{0} \frac{1}{1 + x^2} \, dx \) using 4 approximating rectangles and right endpoints. Your answer should be a sum of numbers; there is no need to compute the sum.

2. According to the midpoint rule, which of the following expressions should be the best approximation for \(\int_{0}^{\pi} \cos^2 x \, dx \)?
 a) \(\sum_{i=1}^{6} \frac{\pi}{6} \cos^2 \left[\frac{(i - 1)\pi}{6} \right] \)
 b) \(\sum_{i=1}^{6} \frac{\pi}{6} \cos^2 \left[\frac{i\pi}{6} \right] \)
 c) \(\sum_{i=1}^{6} \frac{\pi}{6} \cos^2 \left[\frac{(2i - 1)\pi}{12} \right] \)

3. Evaluate the integral \(\int_{-2}^{2} \frac{|x|}{x} \, dx \).

4. Evaluate the indefinite integral \(\int \frac{\sin (\ln x)}{x} \, dx \).

5. Evaluate the integral \(\int_{0}^{\ln 4} e^{-x} \, dx \). Simplify your answer.

6. A particle has velocity at time \(t \) given by \(v(t) = \cos(t) \).
 a) Find the displacement of the particle from time \(t = 0 \) to time \(t = \frac{3\pi}{4} \).
 b) Find the total distance traveled by the particle from time \(t = 0 \) to time \(t = \frac{3\pi}{4} \).

7. A function \(f \) is given by the formula \(f(x) = \int_{x}^{2x} \ln t \, dt \). Calculate \(f'(x) \).

8. A function \(f \) is given by the formula \(f(x) = \int_{0}^{\ln 13} e^{t^2} \, dt \). Calculate \(f'(x) \).

9. A particle moves with velocity \(v(t) = 6 - 3t^2 m \). Determine the average velocity of the particle over the interval \([0, 2]\).

10. Find \(y' \) when \(y = \left(\frac{2x + 1}{\sqrt{3x + 2}} \right)^5 \).

11. Calculate \((f^{-1})'(1) \) if \(f(x) = \frac{2x}{x+1} \).

12. Find \(y' \) if \(y = \frac{1}{\ln x} \).