Definition. A function f is continuous at c if $\lim _{x \rightarrow c} f(x)=f(c)$. This means that f is only continuous at c if all 3 of the following are true:
(1) $f(c)$ is defined,
(2) $\lim _{x \rightarrow c} f(x)$ exists, and
(3) $\lim _{x \rightarrow c} f(x)=f(c)$.

1. Explain (with reference to the list above) why each of the following functions is not continuous at $c=2$.
a) $f(x)=\frac{1}{2-3 x+x^{2}}$
$f(2)$ is not defined (item 1)
Also $\lim _{x \rightarrow 2} f(x)$ DNE (lite my $)$
b) $g(x)=\frac{2-x}{2-3 x+x^{2}}$
$f(2)$ is not defined (item 1)
Note $\frac{2-x}{2-3 x+x^{2}}=\frac{2-x}{(2-x(1-x)}=\frac{1}{1-x}+x \neq 2$
This means $\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2} \frac{1}{1-x}=\frac{1}{-1}=-1$
c) $h(x)= \begin{cases}\frac{2-x}{2-3 x+x^{2}} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}$

$$
\lim _{x \rightarrow 2} h(x)-\lim _{x \rightarrow 2} \frac{2-x}{2-3 x+x^{2}}=\lim _{x \rightarrow 2} \frac{1}{1-x}=-1
$$

$h(2)=17-1$.
Item 3 tails.
2. What value c would make the function continuous at 0 ?
a) $f(x)= \begin{cases}c-x^{2} & \text { if } x \geq 0 \\ \cos x & \text { if } x<0\end{cases}$

$$
\text { Requite } \lim _{x \rightarrow 0^{+}}\left(-x^{2}=\lim _{x \rightarrow 0^{-}} \cos =1\right.
$$

$$
\lim _{x \rightarrow 0+} C-x^{2}=C \text { Thus } C=1 \text { works. }
$$

b) $g(x)= \begin{cases}\frac{\sqrt{4+x}-2}{x} & \text { if } x \neq 0 \\ c & \text { if } x=0\end{cases}$

Require $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}=C$

$$
\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}=\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{4+x}+2)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{4+x}+2}=\frac{1}{4}
$$

Thus $C=\frac{1}{4}$ wiles.
3. Find the points at which the function is not continuous.
a) $f(x)=\left\{\begin{array}{ll}x & \text { if } x<-1 \\ x^{3} & \text { if }-1 \leq x<1 \\ \frac{1}{x} & \text { if } 1 \leq x\end{array} \quad\right.$ Continuous everg-rere

$$
\lim _{x \rightarrow-1^{-}} x=-1 \lim _{x \rightarrow-1} x^{3}=-1\left[(x)=-1 \text { and } f(-1)=(-1)^{3}=-1\right.
$$

b) $\begin{aligned} & x \rightarrow 1^{-} \\ & g(x)\end{aligned}=\frac{1}{1-\cos x}$

Deconthewors then $\quad \cos x=1: x=\cdots,-4 \pi,-2 \pi, 0,2 \pi, 4 \pi, \ldots$
c) How does your answer to part b change if we restrict the domain of g to the interval $(0, \pi)$? Then the function is continues everutre (on the anam)

