CONTINUITY

Definition. A function f is continuous at c if $\lim _{x \rightarrow c} f(x)=f(c)$. This means that f is only continuous at c if all 3 of the following are true:
(1) $f(c)$ is defined,
(2) $\lim _{x \rightarrow c} f(x)$ exists, and
(3) $\lim _{x \rightarrow c} f(x)=f(c)$.

1. Explain (with reference to the list above) why each of the following functions is not continuous at $c=2$.
a) $f(x)=\frac{1}{2-3 x+x^{2}}$
b) $g(x)=\frac{2-x}{2-3 x+x^{2}}$
c) $h(x)= \begin{cases}\frac{2-x}{2-3 x+x^{2}} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}$
2. What value c would make the function continuous at 0 ?
a) $f(x)= \begin{cases}c-x^{2} & \text { if } x \geq 0 \\ \cos x & \text { if } x<0\end{cases}$
b) $g(x)= \begin{cases}\frac{\sqrt{4+x}-2}{x} & \text { if } x \neq 0 \\ c & \text { if } x=0\end{cases}$
3. Find the points at which the function is not continuous.
a) $f(x)= \begin{cases}x & \text { if } x<-1 \\ x^{3} & \text { if }-1 \leq x<1 \\ \frac{1}{x} & \text { if } 1 \leq x\end{cases}$
b) $g(x)=\frac{1}{1-\cos x}$
c) How does your answer to part b change if we restrict the domain of g to the interval $(0, \pi)$?
