1. Find the following derivatives. Recall that $\frac{d}{d x}\left[e^{x}\right]=e^{x}$ and $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$.
a) $\frac{d}{d x}\left[\tan ^{2} x\right]$
b) $\frac{d}{d x}\left[\tan ^{2}\left(x^{2}\right)\right]$
c) $\frac{d}{d x}\left[e^{\tan ^{2} x}\right]$
d) $\frac{d}{d x}\left[e^{\tan ^{2}\left(x^{2}\right)}\right]$

Sometimes a function $y=f(x)$ is defined implicitly by an equation involving x and y. For example, the equation for the unit circle $x^{2}+y^{2}=1$ implicitly defines the functions $y=\sqrt{1-x^{2}}$ and $y=-\sqrt{1-x^{2}}$. It's often more convenient to leave the functions implicit (and sometimes it's not possible to solve for y). The chain rule allows us to find the derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of such implicit functions: differentiate both sides of the equation and apply the chain rule as needed (remembering that y is a function of x). In the example of the circle $x^{2}+y^{2}=1$:

$$
\begin{aligned}
\frac{d}{d x}\left[x^{2}+y^{2}\right] & =\frac{d}{d x}[1] \\
\frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}\left[y^{2}\right] & =0 \\
2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \text { (using the chain rule) }
\end{aligned}
$$

We may then solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}$.
2. Use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$:
a) $e^{y}=x$
b) $e^{\left(y^{2}\right)}=x^{2}$
c) $\sin (y)=x$
d) $x^{2}-x y+y^{2}=1$

