CHAIN RULE AND IMPLICIT DIFFERENTIATION

1. Find the following derivatives. Recall that $\frac{d}{dx}[e^x] = e^x$ and $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$. a) $\frac{d}{dx}[\tan^2 x]$

b)
$$\frac{d}{dx} \left[\tan^2(x^2) \right]$$

c)
$$\frac{d}{dx} \left[e^{\tan^2 x} \right]$$

d)
$$\frac{d}{dx} \left[e^{\tan^2(x^2)} \right]$$

Date: October 4, 2021.

Sometimes a function y = f(x) is defined implicitly by an equation involving x and y. For example, the equation for the unit circle $x^2 + y^2 = 1$ implicitly defines the functions $y = \sqrt{1 - x^2}$ and $y = -\sqrt{1 - x^2}$. It's often more convenient to leave the functions implicit (and sometimes it's not possible to solve for y). The chain rule allows us to find the derivative $\frac{dy}{dx}$ of such implicit functions: differentiate both sides of the equation and apply the chain rule as needed (remembering that y is a function of x). In the example of the circle $x^2 + y^2 = 1$:

$$\frac{d}{dx} [x^2 + y^2] = \frac{d}{dx} [1]$$
$$\frac{d}{dx} [x^2] + \frac{d}{dx} [y^2] = 0$$
$$2x + 2y \frac{dy}{dx} = 0 \text{ (using the chain rule)}$$

We may then solve for $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$.

2. Use implicit differentiation to find dy/dx:
a) e^y = x

b) $e^{(y^2)} = x^2$

c) $\sin(y) = x$

d)
$$x^2 - xy + y^2 = 1$$