INTEGRATION (AND THE FUNDAMENTAL THEOREM OF CALCULUS)

Theorem (FTC I). If f is continuous, then $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$.

$$
y=2 t^{3}-11 t^{2}+17 t-6
$$

1. Use the graph above to place the definite integrals in order (by their values) without evaluating the integrals:
a) $\int_{0}^{\frac{1}{2}} 2 t^{3}-11 t^{2}+17 t-6 d t$
b) $\int_{0}^{1} 2 t^{3}-11 t^{2}+17 t-6 d t$
c) $\int_{0}^{2} 2 t^{3}-11 t^{2}+17 t-6 d t$
d) $\int_{0}^{4} 2 t^{3}-11 t^{2}+17 t-6 d t$
2. Define a new function $F(x)=\int_{0}^{x} 2 t^{3}-11 t^{2}+17 t-6 d t$
a) Try to identify the local extremes of $F(x)$ by interpreting $F(x)$ as a combination of areas under the graph in Figure 1. Recall that local extremes occur when F switches from increasing to decreasing or from decreasing to increasing.
b) Find the local extremes of $F(x)$ using the methods of chapter 3 . Hint: the graph $y=2 t^{3}-11 t^{2}+$ $17 t-6$ crosses the x-axis at $t=\frac{1}{2}, t=2$, and $t=3$, hence $2 t^{3}-11 t^{2}+17 t-6$ has factors $2 t-1$, $t-2$ and $t-3$. Use the graph to determine signs.
3. The Fresnel function S is defined as $S(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$. Do not try to evaluate this integral to find an expression for $S(x)$ (because it's impossible). Fresnel functions first arose in optics, specifically diffraction. Find the location of a local maximum of S and a local minimum of S.
4. Evaluate the following indefinite integrals. (Check answers by differentiating.)
a) $\int 2 x \sin \left(x^{2}\right) d x$
b) $\int\left(6 x^{3}+3 x\right) \sqrt{x^{4}+x^{2}+1} d x$
c) $\int(\sin x) e^{\cos x} d x$
