Definition 1. A function \(f \) is continuous at \(a \) if
\[
\lim_{x \to a} f(x) = f(a).
\]
It is important to realize that this means all 3 of the following things happen:

1. \(f(a) \) is defined;
2. \(\lim_{x \to a} f(x) \) exists;
3. \(\lim_{x \to a} f(x) = f(a) \).

1. Explain why the following function is not continuous at \(a = 2 \).

 a) \(f(x) = \frac{1}{2 - 3x + x^2} \)

 b) \(g(x) = \frac{2 - x}{2 - 3x + x^2} \)

 c) \(h(x) = \begin{cases} \frac{2-x}{2-3x+x^2} & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases} \)
2. What value \(c \) would make the function continuous at \(a = 0 \)?

\[f(x) = \begin{cases} c - x^2 & \text{if } x \geq 0 \\ \cos x & \text{if } x < 0 \end{cases} \]

b) \[g(x) = \begin{cases} \frac{\sqrt{4 + x} - 2}{x} & \text{if } x \neq 0 \\ c & \text{if } x = 0 \end{cases} \]

3. Find the points at which the function \(f(x) = \frac{1}{1 - \cos x} \) is not continuous.