1. ACME has determined that if they charge a price of \(x \) dollars per widget, then they will sell \(\frac{10000}{1+x^2} \) widgets.

 a) Find a function for the (gross) profit \(P(x) \) of the sale of widgets at price \(x \).

 b) What are the units of \(P'(x) \)? Calculate \(P'(x) \).

 c) What does it mean if \(P'(x) > 0 \)? On what interval is \(P'(x) > 0 \)?

 d) What does it mean if \(P'(x) < 0 \)? On what interval is \(P'(x) < 0 \)?

 e) What price should ACME charge in order to maximize their profit?

2. Find an equation for the tangent line to \(f(x) = x \cos x \sin x \) at the point \(\left(\frac{\pi}{4}, \frac{\pi}{8} \right) \).
3. Calculate the derivative \(\frac{d}{dx} \left[\sin \frac{2x}{x} \right] \) (you may want to use the double angle formula \(\sin 2x = 2 \sin x \cos x \)).

4. Let \(f \) be a differentiable function.

 a) Use the product rule to find \(\frac{d}{dx} \left[(f(x))^2 \right] \) (in terms of \(f \) and \(f' \)).

 b) Use the product rule to find \(\frac{d}{dx} \left[(f(x))^3 \right] \) (in terms of \(f \) and \(f' \)).

 c) Use the product rule to find \(\frac{d}{dx} \left[(f(x))^4 \right] \) (in terms of \(f \) and \(f' \)).

 d) Make a guess about the general formula for \(\frac{d}{dx} \left[(f(x))^n \right] \).