SEQUENCES AND SERIES

Definitions:

- A sequence $\{a_n\}$ is a list of numbers: $a_1, a_2, a_3, a_4, \ldots$
- A series is a sum of numbers: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \dots$
- There are two sequences associated with the series $\sum_{n=1}^{\infty} a_n$:

The sequence of terms: a_1, a_2, a_3, \ldots

The sequence of **partial sums**: $s_1, s_2, s_3...$ where $s_k = \sum_{n=1}^k a_n = a_1 + a_2 + a_3 + \cdots + a_k$.

- The sum of a series is the limit of the sequence of partial sums: $\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} s_k$.
- The series $\sum a_n$ is absolutely convergent if both $\sum a_n$ and $\sum |a_n|$ are convergent.
- The series $\sum a_n$ is **conditionally convergent** if $\sum a_n$ converges, but $\sum |a_n|$ diverges.

Tests:

- Test for divergence: if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$ diverges.
- Integral test: if f is a positive, decreasing, continuous function on the interval $[N,\infty)$ and $a_n = f(n)$ for $n \geq N$, then the series $\sum a_n$ and the integral $\int_N^\infty f(x) \ dx$ both converge or both diverge.
- Direct comparison: suppose that $0 \le a_n \le b_n$ for all $n \ge N$.

If $\sum b_n$ converges, then $\sum a_n$ converges. If $\sum a_n$ diverges, then $\sum b_n$ diverges.

• Limit comparison test: suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$.

If $0 < L < \infty$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.

If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges. If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

• Ratio test: let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ If L < 1, then the series $\sum a_n$ is absolutely convergent.

If L > 1, then the series $\sum a_n$ is divergent.

If L=1, then no conclusion can be drawn.

• Root test: let $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

If L < 1, then the series $\sum a_n$ is absolutely convergent.

If L > 1, then the series $\sum a_n$ is divergent.

If L=1, then no conclusion can be drawn.

- Alternating series test: the alternating series $\sum (-1)^n b_n$ converges if:
 - i) $0 \le b_{n+1} \le b_n$ for all $n \ge N$ and
 - ii) $\lim_{n\to\infty} b_n = 0$,

Special series:

- Geometric series: $\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \dots = \frac{1}{1-r}$ if |r| < 1 (and diverges if $|r| \ge 1$).
- The p-series $\sum \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$ is convergent if and only if p > 1.
- The harmonic series $\sum \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is divergent (p-series with p = 1).

Date: October 27, 2020.