A sequence $\{a_n\}$ is a list of numbers: $a_1, a_2, a_3, \ldots, a_n, \ldots$ A series $\sum a_n$ is a sum of numbers: $a_1 + a_2 + a_3 + \cdots + a_n + \ldots$ There are two sequences associated with the series $\sum a_n$:

- 1. the sequence of terms: a_1, a_2, a_3, \ldots and
- 2. the sequence of partial sums: $s_1, s_2, s_3 \dots$ where $s_n = a_1 + a_2 + a_3 + \dots + a_n$.

The sum of a series is the limit of the sequence of partial sums: $\sum a_n = \lim_{n \to \infty} s_n$.

Tests:

- Test for divergence: if $\lim_{n\to\infty} a_n \neq 0$ or if $\lim_{n\to\infty} a_n$ does not exist, then the series $\sum a_n$ diverges. Without symbols: if the limit of the sequence of terms is not zero, then the series diverges.
- Integral test: suppose f is a positive, decreasing function on the interval $[b, \infty)$. Then the series $\sum a_n$ is convergent if and only if the improper integral $\int_b^\infty f(x) dx$ is convergent.
- Comparison test: suppose that $0 \le a_n \le b_n$ for all n.
 - If $\sum b_n$ converges, then $\sum a_n$ converges. If $\sum a_n$ diverges, then $\sum b_n$ diverges.
- Limit comparison test: suppose that $a_n > 0$ and $b_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$.
 - If $0 < L < \infty$, then $\sum s_n$ converges if and only if $\sum b_n$ converges. If $L = \infty$ and $\sum a_n$ converges, then $\sum b_n$ converges. If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- Alternating series test: if the alternating series $\sum (-1)^n b_n$ satisfies
 - 1. $b_{n+1} \leq b_n$ for all n and
 - 2. $\lim_{n\to\infty} b_n = 0$,

then the series converges.

- Ratio test: let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. If L < 1, then the series $\sum a_n$ is absolutely convergent. If L > 1, then the series $\sum a_n$ is divergent. If L = 1, then no conclusion can be drawn.
- Root test: let $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.
 - If L < 1, then the series $\sum a_n$ is absolutely convergent.

If L > 1, then the series $\sum a_n$ is divergent.

If L = 1, then no conclusion can be drawn.

Miscellaneous:

• The geometric series $\sum_{n=0}^{\infty} x^n$ converges if and only if |x| < 1 in which case $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

• A *p*-series $\sum \frac{1}{n^p}$ is convergent if and only if p > 1.

• The Taylor series of a function
$$f$$
 at a is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$.

•
$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\sum c_n(x-a)^n\right] = \sum \left[\frac{\mathrm{d}}{\mathrm{d}x}c_n(x-a)^n\right].$$

•
$$\int \left[\sum c_n (x-a)^n\right] dx = C + \sum \left[\int c_n (x-a)^n dx\right].$$