1. In this problem we will consider a generic function given as a power series centered at 0:

\[f(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + \ldots \]

a) Differentiate the power series and evaluate at \(x = 0 \) to find \(f(0) \), \(f'(0) \), \(f''(0) \), \(f^{(3)}(0) \), and \(f^{(4)}(0) \) (your answers will be in terms of the constants \(c_0, c_1, c_2, \ldots \)).

b) Find a formula relating \(f^{(n)}(0) \) and \(c_n \) (your formula should involve the factorial: \(n! = n(n - 1)(n - 2) \ldots (2)1 \)).

c) Check that your formula works for \(\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n \) by differentiating the left hand side of the equation and evaluating at \(x = 0 \).
2. a) Use the formula you found in 1(b) to find a power series for e^x (that is, suppose $e^x = \sum_{n=0}^{\infty} c_n x^n$ and then find c_0, c_1, c_2, c_3, c_4, and a formula for c_n).

 b) Use the ratio test to find the radius of convergence of the power series for e^x.

3. a) Use the formula of 1(b) to find a power series for $\sin x$.

 b) Differentiate the power series for $\sin x$ to find a power series for $\cos x$.