
Name:

Math 258 Exam 4 December 4, 2015

Instructions: Answer all 9 problems. Calculators, notes, cell phones, and other materials are not permitted. Show
your work: even correct answers may receive little or no credit if a method of solution is not shown. When the solution
to a problem is a power series and you are not given other instructions, write out the first 4 non-zero terms of the

series or use sigma notation to describe the series. For example, tan−1(2x) = 2x − 8
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1. Determine whether the sequence
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converges or diverges. If it converges, find the limit.



2. Determine whether the series
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is convergent or divergent. If it is convergent, find its sum.
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4. Determine whether the series
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6. Find the Taylor series for f(x) = x4 centered at a = 1. Give all non-zero terms of the series.



7. Calculate the coefficient of x12 in the Maclaurin series for f(x) = cos(2x3). Hint: use the Maclaurin series we have
already found.

8. Evaluate the indefinite integral as a series:

∫
ex − 1

x
dx



9. Find the radius of convergence of the power series
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(x− 2)n. Note that this power series is centered at a = 2.


