
Math 258 Final Practice Problems December 8, 2015
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3. Evaluate the improper integral or show that it diverges.
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4. A bacteria culture grows at a rate proportional to its size. After 2 hours there are 90 bacteria and after 4 hours there
are 810 bacteria in the culture. Find the size of the initial population of bacteria in the culture.
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9. The height of a pyramid is 10 meters. Horizontal cross-sections x meters from the top are rectangles with side lengths
x and 2x. What is the volume of the pyramid?
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18. Calculate the area of the region enclosed by the curves y = x2 and y = 2x− x2.

19. Calculate the volume of the solid obtained by rotating the region between x = y2 and x = 1 about the y-axis.

20. Set up but do not evaluate an integral giving the volume of the solid obtained by rotating the region between the
curves y = sinx and y = cosx for − 3π

4 ≤ x ≤
π
4 about the line x = π

2 .

21. Calculate the arc length of the curve y = coshx for 0 ≤ x ≤ ln 5. You may want to make use of the identity
cosh2 x = 1 + sinh2 x.

22. Find the y-coordinate of the centroid of the region bounded by y = ex, the x-axis, the y-axis, and x = ln 4. It may
be helpful to know that the area of the region is 3.

23. A flexible, 120 ft rope with a total weight of 40 lb lies coiled at the base of a cliff. One end is tied to a rock climber
who climbs to a height of 60 ft. How much work did the climber do in raising her end of the rope?
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is absolutely convergent, conditionally convergent, or divergent.

28. Find a power series representation of the function f(x) =
1

(2− x)2
and determine its interval of convergence.
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or find the first 4 terms of the series. Do not simplify your answer.

30. Find the Taylor series for f(x) = 1
x at a = −1. Either write your answer using a
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or find the first 5 terms of the

series.


