SEQUENCES

Definiton. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and L be a number. Then $\lim_{n \to \infty} a_n = L$ if and only if for every number $\epsilon > 0$ there is a number N such that if n > N, then $|a_n - L| < \epsilon$.

- 1. This problem deals with the sequence $\{e^{-n}\}$.
- a) Find the number L such that $L = \lim_{n \to \infty} e^{-n}$.

b) If your answer for part a is correct, then there should be a number N such that if n > N, then $|e^{-n} - L| < \frac{1}{10}$. Find the smallest N that will work.

c) Prove using Definition 1 that your limit is correct (this means finding a formula giving N as a function of ϵ so that if n > N, then $|e^{-n} - L| < \epsilon$).

2. The negation of Definition 1 is: $\lim_{n \to \infty} a_n \neq L$ if and only if there is some number $\epsilon > 0$ such that for every number N there is a number n > N with $|a_n - L| \ge \epsilon$. Use this to prove that $\lim_{n \to \infty} \sin\left(\frac{\pi}{6}n\right) \neq 0$ (this means finding a number $\epsilon > 0$ and a way of finding a number n such that n > N and $|\sin\left(\frac{\pi}{6}\right)| \ge \epsilon$).

- **3.** This problem concerns sums of the terms of the sequence $\left\{\frac{1}{2^n}\right\}_{n=1}^{\infty}$.
- a) Write out the first 6 terms of the sequence $\left\{\frac{1}{2^n}\right\}$.

b) Let s_n be the sum of the first n terms of the sequence $\left\{\frac{1}{2^n}\right\}$ (so $s_1 = \frac{1}{2}$, $s_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$, and so on). Write out s_3 , s_4 , s_5 , s_6 ,... until you see a pattern. Use this to give a formula for s_n .

c) You now understand the sequence $\{s_n\}_{n=1}^{\infty}$. Calculate $\lim_{n\to\infty} s_n$.