NAMES: MATH 258

1. Determine if the series converges or diverges.

a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n+2}}$$

b)
$$\sum_{n=1}^{\infty} \frac{1+\cos n}{2^n}$$

- **2.** We know that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, but how quickly does it diverge?
- a) Use the graph of $y = \frac{1}{x}$ and rectangles representing the series $\sum_{n=1}^{\infty} \frac{1}{n}$ to show that if s_n is the n^{th} partial sum of the harmonic series, then $s_n \leq 1 + \ln n$.

					-	-	-			+	-		+	-	+	-	-	+	-	1		-	-	+	+	+	-	+	+	+	
		-	+ +	-		-	-		-	+	-	+	+	+	+	+	+	+	+	-		+	+	+	+	+	+	+	+	+	
	-	-		-	+	-	-		-	+	+	+	+	+	+	+	+	+	+	-		-	+	+	+	+	+	+	+	+	
		-		-	-	-	-	-	-	-	-	-	+	+	+	+	+	+	-	-	_	-	-	-	+	+	-	+	+	-	
		_		_	_	_	-		_	-	_	_	_	_	_	_	_	-	-			_	_	-	_	_	_	_	_	-	
																		1	1							-		+		-	
		-	-				-		-	-			+	+	+	+	+	+	+			-	+	-	+	+		+	+	-	
		-	+ +	-	-	-	-		-	+	+	+	+	+	+	+	+	+	+	-		+	+	+	+	+	+	+	+	+	
		-		-	+	-	-		-	+	+	+	+	+	+	+	+	+	+	-		-	+	+	+	+	+	+	+	+	
		-		-	-	-	-	-	-	-	-	-	+	+	+	+	-	+	-	-	_	-	-	-	+	+	-	+	+	-	
		_		_	_	_	-		_	-	_	_	_	_	_	_	_	-	-			_	_	-	_	_	_	_	_	_	
		_		_					_	_	_		_	_	_	_		_					_	_	_	_					
							Τ											Т	Т	Τ										Т	
 			-	_	_					-	-	_													-	_	_	_			

b) Use part a and a calculator to find a upper bounds for the one millionth partial sum $s_{1,000,000}$ and the one billionth partial sum $s_{1,000,000}$. Observe that the harmonic series diverges very slowly.

Theorem (The Ratio Test). Suppose that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$

- i) If L < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- ii) If L > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- iii) If L = 1, then the test is inconclusive.

- **Theorem** (The Root Test). Suppose that $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$.
 - i) If L < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
- ii) If L > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- iii) If L = 1, then the test is inconclusive.
- 3. Use the ratio or the root test to determine if each series is convergent or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{2^n n^2}$$

c)
$$\sum_{n=1}^{\infty} \frac{n!}{100^n}$$

d)
$$\sum_{n=1}^{\infty} \left(\frac{-2n}{n+1}\right)^{5n}$$