POWER SERIES

Basics:

- A sequence $\{a_n\}$ is a list of numbers: $a_0, a_1, a_2, a_3, \ldots, a_n, \ldots$
- A series is a sum of numbers: $\sum_{k=0}^{\infty} a_k = a_0 + a_1 + a_2 + a_3 + \dots$
- A **power series** centered at *a* is an infinite series of the form:

$$\sum_{k=1}^{\infty} c_k (x-a)^k = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$$

The coefficients c_k must be constant.

The series converges for all x in an interval centered at a (and diverges for x outside that interval). This is the **interval of convergence**.

The radius of convergence is:

0 if the series conveges only for x = a

A number R > 0 if the interval of convergence is (a - R, a + R) (possibly including a - Rand/or a + R; convergence for x = a - R and x = a + R usually needs to be checked by hand) ∞ if the interval of convergence is $(-\infty, \infty)$

• There are two sequences associated with the series $\sum_{k=0}^{\infty} a_k$:

The sequence of terms: $a_0, a_1, a_2, a_3, \ldots$

- The sequence of **partial sums**: $s_1, s_2, s_3 \ldots$ where
- $s_n = \sum_{k=0}^n a_k = a_0 + a_1 + a_2 + a_3 + \dots + a_n.$
- The sum of a series is the limit of the sequence of partial sums: $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n$.
- The series $\sum_{k=1}^{\infty} a_k$ is absolutely convergent if both $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} |a_k|$ are convergent.
- The series $\sum_{k=1}^{\infty} a_k$ is conditionally convergent if $\sum_{k=1}^{\infty} a_k$ is convergent, but $\sum_{k=1}^{\infty} |a_k|$ is divergent.

Power series:

•
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots$$
 if $|x| < 1$
• $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ for all x
• $\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^4}{4!} + \dots$ for all x
• $\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ for all x
• $\tan^{-1} x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7!} + \dots$ if $|x| \le 1$
• $\ln x = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(x-1)^k}{k} = x - 1 - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots$ if $|x-1| < 1$
• $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \frac{f^{(3)}(a)}{3!} (x-a)^3 + \dots$

Date: April 15, 2019.

Tests:

- Test for divergence: if $\lim_{k\to\infty} a_k \neq 0$, then the series $\sum a_k$ diverges.
- Integral test: if f is a positive, decreasing, continuous function on the interval $[b, \infty)$ and $a_k = f(k)$ for $k \ge b$, then the series $\sum a_k$ and the integral $\int_b^\infty f(x) dx$ are both convergent or both divergent.
- Comparison test: suppose that $0 \le a_k \le b_k$ for all $k \ge N$. If $\sum b_k$ converges, then $\sum a_k$ converges. If $\sum a_k$ diverges, then $\sum b_k$ diverges.
- Limit comparison test: suppose that $a_k > 0$ and $b_k > 0$ for all $k \ge N$ and $\lim_{k\to\infty} \frac{a_k}{b_k} = L$. If $0 < L < \infty$, then $\sum a_k$ and $\sum b_k$ are both convergent or both divergent. If L = 0 and $\sum b_k$ converges, then $\sum a_k$ converges. If $L = \infty$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.
- Alternating series test: the alternating series ∑(-1)^kb_k converges if
 1) 0 ≤ b_{k+1} ≤ b_k for all k and
 2) lim_{k→∞} b_k = 0,
- Ratio test: let $L = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$. If L < 1, then the series $\sum a_k$ is absolutely convergent. If L > 1, then the series $\sum a_k$ is divergent. If L = 1, then no conclusion can be drawn.
- Root test: let $L = \lim_{k \to \infty} \sqrt[k]{|a_k|}$. If L < 1, then the series $\sum a_k$ is absolutely convergent. If L > 1, then the series $\sum a_k$ is divergent. If L = 1, then no conclusion can be drawn.

Special series:

• Geometric series:

$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + r^3 + \dots = \frac{1}{1-r} \text{ if } |r| < 1$$
$$\sum_{k=1}^{\infty} r^k = r + r^2 + r^3 + r^4 + \dots = \frac{r}{1-r} \text{ if } |r| < 1$$

- The *p*-series $\sum \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$ is convergent if and only if p > 1.
- The harmonic series $\sum \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is divergent (*p*-series with p = 1).

Practice:

1. Find the radius of convergence and interval of convergence of the series:

a)
$$\sum_{k=1}^{\infty} \frac{x^{k}}{\sqrt{k}}$$

b)
$$\sum_{k=1}^{\infty} kx^{k}$$

c)
$$\sum_{k=1}^{\infty} \frac{x^{k}}{k3^{k}}$$

d)
$$\sum_{k=0}^{\infty} \frac{k^{2}x^{k}}{10^{k}}$$

e)
$$\sum_{k=1}^{\infty} \frac{(x-1)^{k}}{k^{k}}$$

f)
$$\sum_{k=1}^{\infty} \frac{2^{k}(x-3)^{k}}{k+4}$$

2. Find a power series representation for the function and determine the radius of convergence: a) $f(x) = \ln(1+x)$

b)
$$f(x) = \frac{1}{(1+x)^2}$$

c) $f(x) = \frac{x}{(x-1)^3}$
d) $f(x) = \frac{3}{(2-x)^2}$

3. Evaluate as a power series: l = 1

a)
$$\int \frac{1}{1+x^4} dx$$

b) $\int_0^{\frac{1}{2}} \tan^{-1}(x^2) dx$
c) $\lim_{x \to 0} \frac{\tan^{-1} x}{x}$

4. Find the Taylor series for f centered at the given value:

a)
$$f(x) = \frac{1}{x}, a = 1$$

b) $f(x) = \sin x, a = \frac{\pi}{4}$
c) $f(x) = \sqrt{x}, a = 4$

5. Find the sum of the series: $\sum_{k=1}^{\infty} x^{4k}$

a)
$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{4k}}{k!}$$

b) $\sum_{k=0}^{\infty} \frac{3^k}{5^k k!}$
c) $\ln x + \frac{(\ln x)^2}{3} + \frac{(\ln x)^3}{9} + \frac{(\ln x)^4}{27} + \frac{(\ln x)^5}{81} + \dots$