POWER SERIES

Basics:

- A sequence $\left\{a_{n}\right\}$ is a list of numbers: $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$.
- A series is a sum of numbers: $\sum_{k=0}^{\infty} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+\ldots$.
- A power series centered at a is an infinite series of the form:

$$
\sum_{k=1}^{\infty} c_{k}(x-a)^{k}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots
$$

The coefficients c_{k} must be constant.
The series converges for all x in an interval centered at a (and diverges for x outside that interval). This is the interval of convergence.

The radius of convergence is:
0 if the series conveges only for $x=a$
A number $R>0$ if the interval of convergence is $(a-R, a+R)$ (possibly including $a-R$ and/or $a+R$; convergence for $x=a-R$ and $x=a+R$ usually needs to be checked by hand)
∞ if the interval of convergence is $(-\infty, \infty)$

- There are two sequences associated with the series $\sum_{k=0}^{\infty} a_{k}$:

The sequence of terms: $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$.
The sequence of partial sums: $s_{1}, s_{2}, s_{3} \ldots$ where $s_{n}=\sum_{k=0}^{n} a_{k}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots+a_{n}$.

- The sum of a series is the limit of the sequence of partial sums: $\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} s_{n}$.
- The series $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent if both $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty}\left|a_{k}\right|$ are convergent.
- The series $\sum_{k=1}^{\infty} a_{k}$ is conditionally convergent if $\sum_{k=1}^{\infty} a_{k}$ is convergent, but $\sum_{k=1}^{\infty}\left|a_{k}\right|$ is divergent.

Power series:

- $\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\ldots$ if $|x|<1$
- $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$ for all x
- $\cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{4}}{4!}+\ldots$ for all x
- $\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$ for all x
- $\tan ^{-1} x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7!}+\ldots$ if $|x| \leq 1$
- $\ln x=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(x-1)^{k}}{k}=x-1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots$ if $|x-1|<1$
- $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\ldots$.

Tests:

- Test for divergence: if $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then the series $\sum a_{k}$ diverges.
- Integral test: if f is a positive, decreasing, continuous function on the interval $[b, \infty)$ and $a_{k}=f(k)$ for $k \geq b$, then the series $\sum a_{k}$ and the integral $\int_{b}^{\infty} f(x) d x$ are both convergent or both divergent.
- Comparison test: suppose that $0 \leq a_{k} \leq b_{k}$ for all $k \geq N$.

If $\sum b_{k}$ converges, then $\sum a_{k}$ converges.
If $\sum a_{k}$ diverges, then $\sum b_{k}$ diverges.

- Limit comparison test: suppose that $a_{k}>0$ and $b_{k}>0$ for all $k \geq N$ and $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L$.

If $0<L<\infty$, then $\sum a_{k}$ and $\sum b_{k}$ are both convergent or both divergent.
If $L=0$ and $\sum b_{k}$ converges, then $\sum a_{k}$ converges.
If $L=\infty$ and $\sum b_{k}$ diverges, then $\sum a_{k}$ diverges.

- Alternating series test: the alternating series $\sum(-1)^{k} b_{k}$ converges if

1) $0 \leq b_{k+1} \leq b_{k}$ for all k and
2) $\lim _{k \rightarrow \infty} b_{k}=0$,

- Ratio test: let $L=\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|$.

If $L<1$, then the series $\sum a_{k}$ is absolutely convergent.
If $L>1$, then the series $\sum a_{k}$ is divergent.
If $L=1$, then no conclusion can be drawn.

- Root test: let $L=\lim _{k \rightarrow \infty} \sqrt[k]{\left|a_{k}\right|}$.

If $L<1$, then the series $\sum a_{k}$ is absolutely convergent.
If $L>1$, then the series $\sum a_{k}$ is divergent.
If $L=1$, then no conclusion can be drawn.

Special series:

- Geometric series:

$$
\begin{aligned}
& \sum_{k=0}^{\infty} r^{k}=1+r+r^{2}+r^{3}+\cdots=\frac{1}{1-r} \text { if }|r|<1 \\
& \sum_{k=1}^{\infty} r^{k}=r+r^{2}+r^{3}+r^{4}+\cdots=\frac{r}{1-r} \text { if }|r|<1
\end{aligned}
$$

- The p-series $\sum \frac{1}{k^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots$ is convergent if and only if $p>1$.
- The harmonic series $\sum \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is divergent $(p$-series with $p=1)$.

Practice:

1. Find the radius of convergence and interval of convergence of the series:
a) $\sum_{k=1}^{\infty} \frac{x^{k}}{\sqrt{k}}$
b) $\sum_{k=1}^{\infty} k x^{k}$
c) $\sum_{k=1}^{\infty} \frac{x^{k}}{k 3^{k}}$
d) $\sum_{k=0}^{\infty} \frac{k^{2} x^{k}}{10^{k}}$
e) $\sum_{k=1}^{\infty} \frac{(x-1)^{k}}{k^{k}}$
f) $\sum_{k=1}^{\infty} \frac{2^{k}(x-3)^{k}}{k+4}$
2. Find a power series representation for the function and determine the radius of convergence:
a) $f(x)=\ln (1+x)$
b) $f(x)=\frac{1}{(1+x)^{2}}$
c) $f(x)=\frac{x}{(x-1)^{3}}$
d) $f(x)=\frac{3}{(2-x)^{2}}$
3. Evaluate as a power series:
a) $\int \frac{1}{1+x^{4}} d x$
b) $\int_{0}^{\frac{1}{2}} \tan ^{-1}\left(x^{2}\right) d x$
c) $\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}$
4. Find the Taylor series for f centered at the given value:
a) $f(x)=\frac{1}{x}, a=1$
b) $f(x)=\sin x, a=\frac{\pi}{4}$
c) $f(x)=\sqrt{x}, a=4$
5. Find the sum of the series:
a) $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k}}{k!}$
b) $\sum_{k=0}^{\infty} \frac{3^{k}}{5^{k} k!}$
c) $\ln x+\frac{(\ln x)^{2}}{3}+\frac{(\ln x)^{3}}{9}+\frac{(\ln x)^{4}}{27}+\frac{(\ln x)^{5}}{81}+\ldots$
