SEQUENCES AND SERIES

Definitions:

- A sequence $\{a_n\}$ is a list of numbers: $a_1, a_2, a_3, \ldots, a_n, \ldots$
- A series is a sum of numbers: $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + a_4 + \dots$
- There are two sequences associated with the series $\sum_{k=1}^{\infty} a_k$:

The sequence of terms: a_1, a_2, a_3, \ldots

The sequence of **partial sums**: $s_1, s_2, s_3 \dots$ where $s_n = \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \dots + a_n$.

- The sum of a series is the limit of the sequence of partial sums: $\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n$.
- The series $\sum_{k=1}^{\infty} a_k$ is absolutely convergent if both $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} |a_k|$ are convergent.
- The series $\sum_{k=1}^{\infty} a_k$ is **conditionally convergent** if $\sum_{k=1}^{\infty} a_k$ is convergent, but $\sum_{k=1}^{\infty} |a_k|$ is divergent.

Tests:

- Test for divergence: if $\lim_{k\to\infty} a_k \neq 0$, then the series $\sum a_k$ diverges.
- Integral test: if f is a positive, decreasing, continuous function on the interval $[b,\infty)$ and $a_k = f(k)$ for $k \ge b$, then the series $\sum a_k$ and the integral $\int_b^\infty f(x) \ dx$ are both convergent or both divergent.
- Comparison test: suppose that $0 \le a_k \le b_k$ for all $k \ge N$.

If $\sum b_k$ converges, then $\sum a_k$ converges. If $\sum a_k$ diverges, then $\sum b_k$ diverges.

• Limit comparison test: suppose that $a_k > 0$ and $b_k > 0$ for all $k \ge N$ and $\lim_{k \to \infty} \frac{a_k}{b_k} = L$.

If $0 < L < \infty$, then $\sum a_k$ and $\sum b_k$ are both convergent or both divergent. If L = 0 and $\sum b_k$ converges, then $\sum a_k$ converges.

If $L = \infty$ and $\sum b_k$ diverges, then $\sum a_k$ diverges.

- Alternating series test: the alternating series $\sum (-1)^k b_k$ converges if
 - 1) $0 \le b_{k+1} \le b_k$ for all k and
 - $2) \lim_{k \to \infty} b_k = 0,$
- Ratio test: let $L = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$. If L < 1, then the series $\sum a_k$ is absolutely convergent.

If L > 1, then the series $\sum a_k$ is divergent.

If L=1, then no conclusion can be drawn.

• Root test: let $L = \lim_{k \to \infty} \sqrt[k]{|a_k|}$.

If L < 1, then the series $\sum a_k$ is absolutely convergent. If L > 1, then the series $\sum a_k$ is divergent.

If L=1, then no conclusion can be drawn.

Special series:

• Geometric series:

$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + r^3 + \dots = \frac{1}{1-r} \text{ if } |r| < 1$$

$$\sum_{k=1}^{\infty} r^k = r + r^2 + r^3 + r^4 + \dots = \frac{r}{1-r} \text{ if } |r| < 1$$

- The p-series $\sum \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$ is convergent if and only if p > 1.
- The harmonic series $\sum \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is divergent (p-series with p = 1).