TRIG INTEGRALS

$\int \sin^m x \cos^n x dx$	Strategy
If n is odd and positive	keep $\cos x dx$, rewrite everything else in terms of $\sin x$, then sub in $u = \sin x$ (with $du = \cos x dx$)
If m is odd and positive	keep $\sin x dx$, rewrite everything else in terms of $\cos x$, then sub in $u = \cos x$ (with $(-1)du = \sin x dx$)
If m and n are both even non-negative integers	use half-angle formulas to convert to $\cos 2x$ and refer back to this table

Theorem (Pythagoras). $\sin^2 x + \cos^2 x = 1$

Note that dividing by $\cos^2 x$ or by $\sin^2 x$ in the Pythagorean theorem also gives useful identities.

Theorem (Half-angle formulas). $\sin^2 x = \frac{1 - \cos 2x}{2}$ and $\cos^2 x = \frac{1 + \cos 2x}{2}$

1. Evaluate the following integrals. (Use scratch paper).

a)
$$\int \sin^3 x \, dx$$

b)
$$\int \sin^2 x \cos^3 x \, dx$$

c)
$$\int \cos^4 x \, dx$$

Date: February 15, 2019.

$\int \tan^m x \sec^n x dx$	Strategy
If n is even	keep $\sec^2 x dx$, rewrite everything else in terms of $\tan x$, then sub in $u = \tan x$ (with $du = \sec^2 x dx$)
If m is odd	keep $\tan x \sec x dx$, rewrite everything else in terms of $\sec x$, then sub in $u = \sec x$ (with $du = \tan x \sec x dx$)
If m is even and n is odd	\ldots rewrite everything in terms of sec x and apply the reduction formula below
If you want	\dots convert to $\sin x$ and $\cos x$ and see the other table

Theorem (Reduction formula). $\int \sec^n x \, dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx \quad (provided \ n \neq 1).$

2. Evaluate the following integrals. (Use scratch paper).

a)
$$\int \sec^4 x \, dx$$

b) $\int \tan x \sec^4 x \, dx$
c) $\int \tan^3 x \, dx$