INFINITE SERIES

Theorem. If |r| < 1, then $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$.

- 1. Find the sum of the series:
 - a) $\sum_{n=1}^{\infty} \left(-\frac{3}{4}\right)^n$
 - b) $\sum_{n=3}^{\infty} \left(-\frac{3}{4}\right)^n$
 - c) $\sum_{n=0}^{\infty} r^n$ (where |r| < 1)
- **2.** The decimal 0.999... can be expressed as an infinite series $\sum_{n=1}^{\infty} \frac{9}{10^n}$.
 - a) Verify that the series $\sum_{n=1}^{\infty} \frac{9}{10^n}$ does, in fact, sum to 1.

b) Use the same approach to find a rational expression for the number 0.777...

c) Use the same approach to find a rational expression for the number $0.272727\ldots$

Date: March 8, 2019.

- **3.** Some series are called telescoping series because middle terms of the partial sums cancel out, giving a simple formula for S_n .
 - a) Find a simple formula for the partial sums of $\sum_{k=1}^{\infty} \left(\frac{1}{k+1} \frac{1}{k+2} \right)$.

b) Take the limit to find the sum of the series.

c) Use a similar approach to find the sum of $\sum_{k=1}^{\infty} \left(\frac{1}{k(k+1)}\right)$. Hint: start with a partial fractions decomposition.