INFINITE SERIES II

1. Find an estimate for the sum of the series that is correct to 2 decimal places: $\sum_{k=1}^{\infty} \frac{1}{k^5}$

2. Determine if the series converge or diverge:

a)
$$\sum_{k=1}^{\infty} \frac{k^3}{k^3 + k + 1}$$

b)
$$\sum_{k=1}^{\infty} \frac{1+2^k}{3^k}$$

c)
$$\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^3}$$

Date: March 20, 2019.

Theorem (Comparison test). Suppose that $0 \le a_k \le b_k$ for all $n \ge N$.

- (1) If $\sum b_n$ converges, then $\sum a_n$ converges. (2) If $\sum a_n$ diverges, then $\sum b_n$ diverges.
- 3. Use the comparison test to show that the following series converge.

a)
$$\sum_{k=1}^{\infty} \frac{1+2^k}{2+3^k}$$

b)
$$\sum_{k=2}^{\infty} \frac{1}{k^2 (\ln k)^3}$$

$$c) \sum_{k=1}^{\infty} \frac{1}{k\sqrt{k+1}}$$

4. Use the comparison test to show that the following series diverge.

a)
$$\sum_{k=1}^{\infty} \frac{1+3^k}{2^k-1}$$

b)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k} \ln k}$$