TAYLOR POLYNOMIALS

Definition. The degree *n* Taylor polynomial for f(x) centered at *a* is

$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Theorem. If $f^{(n+1)}(c) \leq M$ for all c between a and x, then

$$|R_n(x)| = |f(x) - p_n(x)| \le \frac{M}{(n+1)!} |x - a|^{n+1}.$$

1. Let $f(x) = \cos x$.

a) Find $p_7(x)$, the degree 7 Taylor polynomial for f centered at 0.

b) Estimate $\cos(1)$ by calculating $p_7(1)$.

c) Use the theorem above to find an upper bound for the error of your estimate.

Date: April 2, 2019.

- **2.** Let $f(x) = e^x$.
 - a) Find $p_4(x)$, the degree 4 Taylor polynomial for f centered at 0.

- b) Use p_4 to estimate \sqrt{e} .
- c) Use the theorem above to find an upper bound for the error of your estimate.
- d) Use a calculator to find the actual error of your estimate.
- e) Find an upper bound for the error of $p_n(1/2)$ as an estimate for \sqrt{e} and take the limit as $n \to \infty$. Interpret the result.

- **3.** Let $f(x) = \frac{1}{1-x}$.
 - a) Find $p_4(x)$, the degree 4 Taylor polynomial for f centered at 0.

b) Find $q_4(x)$, the degree 4 Taylor polynomial for f centered at -1.