SERIES I

1. Define a sequence $\{s_n\}_{n=1}^{\infty}$ as follows:

$$s_1 = \frac{1}{2}$$
 and $s_{n+1} = s_n + \frac{1}{2^{n+1}}$

- a) Calculate s_2 , s_3 , s_4 , and s_5 .
- b) Find a (non-recursive) formula for s_n .
- c) Calculate $\lim_{n\to\infty} s_n$.
- **2.** Define a sequence $\{s_k\}_{k=1}^{\infty}$ as follows:

$$s_k = \sum_{n=1}^k \frac{2}{n(n+2)}$$

- a) Calculate s_1 , s_2 , and s_3 . (This will be less helpful than it was in the last problem).
- b) Find a partial fraction decomposition for $\frac{2}{n(n+2)}$.
- c) Use your partial fraction decomposition to find a formula for s_k .
- d) Calculate the limit $\lim_{k\to\infty} s_k$.
- **3.** Decide if each of the following sequences converges or diverges. It's okay to guess, by try to explain what you're thinking.
 - a) $s_1 = \frac{1}{3}$ and $s_{n+1} = s_n + \frac{1}{3^{n+1}}$
 - b) $s_1 = 1$ and $s_{n+1} = s_n + (-1)^{n+1}$
 - c) $s_1 = 1$ and $s_{n+1} = s_n + \frac{n+1}{n}$
 - d) $s_1 = 1$ and $s_{n+1} = s_n + \frac{1}{n+1}$

Date: October 15, 2020.