POLAR TIME

The polar point (r, θ) is the point at a distance r from the origin in the direction of angle θ . To convert from polar to Cartesian:

$$x = r\cos\theta$$

$$y = r \sin \theta$$

1. Plot the polar points and find their Cartesian coordinates:

b)
$$(1, -\frac{\pi}{4})$$

c)
$$\left(-1, \frac{3\pi}{4}\right)$$

When converting from Cartesian to polar coordinates:

$$r^2 = x^2 + y^2$$

$$\tan \theta = \frac{y}{x}$$

Some values of $\tan \theta$:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	U

2. Find the polar coordinates of the Cartesian points:

- a) $(\sqrt{3}, 1)$
- b) (-1,1)
- c) $(2, -\sqrt{12})$

3. Sketch a graph of the polar curve: $r = 1 + 2\cos\theta$. Give coordinates for all axis intercepts.

- 4. Sketch graphs of the polar curves. $r = \sin \theta$. Label all axis intercepts.
 - a) $r = \sin \theta$.
 - $b) r = \sin(2\theta).$
 - c) $r = \sin(3\theta)$.

