POLAR CALCULUS

- 1. Consider the polar curve $r = 1 + 2\cos(2\theta)$.
 - a) Convert to parametric using $x = r \cos \theta$ and $y = r \sin \theta$.
 - b) Use the parametric fomulation to find dy/dx.
 - c) Calculate $\frac{dy}{dx}\Big|_{\theta=\frac{\pi}{3}}$

Theorem. The slope of the curve $r = f(\theta)$ is

$$\frac{dy}{dx} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$

Date: December 3, 2020.

Theorem. The area of the fan-shaped region between the origin and the curve $r = f(\theta)$ for $\alpha \le \theta \le \beta$ (and $\beta - \alpha \le 2\pi$) is

$$A = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \ d\theta$$

- **2.** Continue working with the polar curve $r = 1 + 2\cos(2\theta)$. This curve has two big loops and two small loops.
 - a) Find the area enclosed within one of the big loops by finding the area inside the curve for $0 \le \theta \le \frac{\pi}{3}$ and doubling it.
 - b) Find the area enclosed within one of the small loops.

Theorem. The length of the polar curve $r = f(\theta)$ for $\alpha \le \theta \le \beta$ (with the curve traced exactly once as θ runs from α to β) is

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$$

- **3.** Find integrals for the lengths of the two sizes of loop in $r = 1 + 2\cos(2\theta)$. These will be (very) hard to evaluate, but you can use a calculator or computer to get approximations.
- **4.** Find the length of the cardioid $r = 1 + \cos \theta$. Hints: you'll need the identity $2\cos^2 u = 1 + \cos(2u)$ and you'll also need to remember that $\sqrt{u^2} = |u|$.