FUNCTIONS DEFINED AS INTEGRALS

Definition. The natural logarithm function is defined as the following integral:

$$\ln x = \int_1^x \frac{1}{t} dt$$

See the Desmos graph: https://www.desmos.com/calculator/vmhz3j2hsk.

1. All of the properties of the natural logarithm follow from the definition above. Use the definition to prove part a, then use part a to prove part b, and so on.

a)
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

b) $\ln(ax) = \ln a + \ln x$
c) $\ln\left(\frac{x}{a}\right) = \ln x - \ln a$
d) $\ln(x^a) = a \ln x$

Date: December 7, 2020.

Definition. The natural exponential function is the inverse of the natural logarithm function:

 $e^x = y$ if and only if $x = \ln y$

or, equivalently,

 $e^{\ln x} = x$ and $\ln(e^x) = x$

See the Desmos graph: https://www.desmos.com/calculator/vmhz3j2hsk.

2. The properties of the natural exponential function follow from the properties of the natural logarithm.

- a) Use implicit differentiation of $x = \ln y$ to find $\frac{dy}{dx}$ for $y = e^x$. b) Take the logarithm of $e^a e^x$ to show that $e^{a+x} = e^a e^x$.
- c) Take the logarithm to show $e^{x-a} = e^{-a}e^x$.
- d) Take the logarithm to show $(e^x)^a = e^{ax}$.

Definition. The general exponential function with base b is $b^x = e^{x \ln b}$ and the logarithm with base b is $\log_{1} x = \frac{\ln x}{2}$

$$\ln b$$

3. Show that the exponential function with base b and logarithm with base b are inverses, that is that $x = b^{\log_b x}$ and $x = \log_b (b^x)$.

Definition. The gamma function is defined as $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$ for $\alpha > 0$.

- a) Show that $\Gamma(1) = 1$ by evaluating the integral.
- b) Integrate by parts to find $\Gamma(2)$. Integration by parts: $\int u dv = uv \int v du$. Hint: watch for $\Gamma(1)$ to show up-you don't need to repeat your work for this integral.
- c) Integrate by parts to show that $\Gamma(3) = 2\Gamma(2)$.
- d) Fill in the end of the statement: for any positive integer n, $\Gamma(n) =$

The gamma function is a way to extend the factorials to non-integers (and ultimately even to complex numbers). For example $\Gamma(1/2) = \sqrt{\pi}$. For more, see https://mathworld.wolfram.com/GammaFunction.html.